Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca2+ transport in the pathogenesis of diseases

Abstract

Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%–20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10–30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteins involved in Ca2+ transport of within MAMs.
Fig. 2: Structure of the mitochondrial calcium uniporter (MCU) in MAMs.
Fig. 3: Effect of MAM-related Ca2+ transport on cellular function.
Fig. 4: The relationship between MAM-related calcium transport and cardiovascular diseases is intricate.
Fig. 5: MAMs are implicated in the pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).
Fig. 6: The oncogenes and tumor suppressors involved in inter-organelle Ca2+ transport between ER and mitochondria.

Similar content being viewed by others

References

  1. Jiang RQ, Li QQ, Sheng R. Mitochondria associated ER membranes and cerebral ischemia: molecular mechanisms and therapeutic strategies. Pharmacol Res. 2023;191:106761.

    Article  CAS  PubMed  Google Scholar 

  2. Rowland AA, Voeltz GK. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol. 2012;13:607–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Copeland DE, Dalton AJ. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J Biophys Biochem Cytol. 1959;5:393–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vance JE. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem. 1990;265:7248–56.

    Article  CAS  PubMed  Google Scholar 

  5. Filadi R, Theurey P, Pizzo P. The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium. 2017;62:1–15.

    Article  CAS  PubMed  Google Scholar 

  6. Fujimoto M, Hayashi T. New insights into the role of mitochondria-associated endoplasmic reticulum membrane. Int Rev Cell Mol Biol. 2011;292:73–117.

    Article  CAS  PubMed  Google Scholar 

  7. Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJ, Madra M, et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 2012;31:4106–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayashi T, Rizzuto R, Hajnoczky G, Su TP. MAM: more than just a housekeeper. Trends Cell Biol. 2009;19:81–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thoudam T, Jeon JH, Ha CM, Lee IK. Role of mitochondria-associated endoplasmic reticulum membrane in inflammation-mediated metabolic diseases. Mediators Inflamm. 2016;2016:1851420.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen X, Mi L, Gu G, Gao X, Gao X, Shi M, et al. Dysfunctional endoplasmic reticulum-mitochondrion coupling is associated with endoplasmic reticulum stress-induced apoptosis and neurological deficits in a rodent model of severe head injury. J Neurotrauma. 2022;39:560–76.

    Article  CAS  PubMed  Google Scholar 

  11. Giorgi C, De Stefani D, Bononi A, Rizzuto R, Pinton P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol. 2009;41:1817–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao P, Yan Z, Zhu Z. Mitochondria-associated endoplasmic reticulum membranes in cardiovascular diseases. Front Cell Dev Biol. 2020;8:604240.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vallese F, Barazzuol L, Maso L, Brini M, Cali T. ER-mitochondria calcium transfer, organelle contacts and neurodegenerative diseases. Adv Exp Med Biol. 2020;1131:719–46.

    Article  CAS  PubMed  Google Scholar 

  14. Yang S, Zhou R, Zhang C, He S, Su Z. Mitochondria-associated endoplasmic reticulum membranes in the pathogenesis of type 2 diabetes mellitus. Front Cell Dev Biol. 2020;8:571554.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marchi S, Patergnani S, Pinton P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim Biophys Acta. 2014;1837:461–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wang PT, Garcin PO, Fu M, Masoudi M, St-Pierre P, Panté N, et al. Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria. J Cell Sci. 2015;128:2759–65.

    CAS  PubMed  Google Scholar 

  17. Palmgren MG, Nissen P. P-type ATPases. Annu Rev Biophys. 2011;40:243–66.

    Article  CAS  PubMed  Google Scholar 

  18. Lipskaia L, Keuylian Z, Blirando K, Mougenot N, Jacquet A, Rouxel C, et al. Expression of sarco (endo) plasmic reticulum calcium ATPase (SERCA) system in normal mouse cardiovascular tissues, heart failure and atherosclerosis. Biochim Biophys Acta. 2014;1843:2705–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vandecaetsbeek I, Trekels M, De Maeyer M, Ceulemans H, Lescrinier E, Raeymaekers L, et al. Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump. Proc Natl Acad Sci USA. 2009;106:18533–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ashby MC, Tepikin AV. ER calcium and the functions of intracellular organelles. Semin Cell Dev Biol. 2001;12:11–7.

    Article  CAS  PubMed  Google Scholar 

  21. Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, et al. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature. 2015;527:336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prole DL, Taylor CW. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol. 2016;594:2849–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280:1763–6.

    Article  CAS  PubMed  Google Scholar 

  24. Mak DO, Foskett JK. Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: a single-channel point of view. Cell Calcium. 2015;58:67–78.

    Article  CAS  PubMed  Google Scholar 

  25. Huang H, Shah K, Bradbury NA, Li C, White C. Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation. Cell Death Dis. 2014;5:e1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weisthal S, Keinan N, Ben-Hail D, Arif T, Shoshan-Barmatz V. Ca2+-mediated regulation of VDAC1 expression levels is associated with cell death induction. Biochim Biophys Acta. 2014;1843:2270–81.

    Article  CAS  PubMed  Google Scholar 

  27. Tsujimoto Y, Shimizu S. VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ. 2000;7:1174–81.

    Article  CAS  PubMed  Google Scholar 

  28. Cherubini M, Lopez-Molina L, Gines S. Mitochondrial fission in Huntington’s disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca2+ efflux and reactive oxygen species (ROS) homeostasis. Neurobiol Dis. 2020;136:104741.

    Article  CAS  PubMed  Google Scholar 

  29. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456:605–10.

    Article  PubMed  Google Scholar 

  30. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA. 2015;112:E2174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwong JQ. The mitochondrial calcium uniporter in the heart: energetics and beyond. J Physiol. 2017;595:3743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pittis AA, Goh V, Cebrian-Serrano A, Wettmarshausen J, Perocchi F, Gabaldón T. Discovery of EMRE in fungi resolves the true evolutionary history of the mitochondrial calcium uniporter. Nat Commun. 2020;11:4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park J, Lee Y, Park T, Kang JY, Mun SA, Jin M, et al. Structure of the MICU1-MICU2 heterodimer provides insights into the gatekeeping threshold shift. IUCrJ. 2020;7:355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patron M, Checchetto V, Raffaello A, Teardo E, Vecellio Reane D, Mantoan M, et al. MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol Cell. 2014;53:726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan M, Zhang J, Tsai CW, Orlando BJ, Rodriguez M, Xu Y, et al. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature. 2020;582:129–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mallilankaraman K, Cárdenas C, Doonan PJ, Chandramoorthy HC, Irrinki KM, Golenár T, et al. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol. 2012;14:1336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanchez-Alvarez M, del Pozo MA, Bakal C. AKT-mTOR signaling modulates the dynamics of IRE1 RNAse activity by regulating ER-mitochondria contacts. Sci Rep. 2017;7:16497.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Carreras-Sureda A, Jaña F, Urra H, Durand S, Mortenson DE, Sagredo A, et al. Publisher Correction: non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat Cell Biol. 2019;21:913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takeda K, Nagashima S, Shiiba I, Uda A, Tokuyama T, Ito N, et al. MITOL prevents ER stress-induced apoptosis by IRE1α ubiquitylation at ER–mitochondria contact sites. EMBO J. 2019;38:e100999.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 2012;19:1880–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Munoz JP, Ivanova S, Sanchez-Wandelmer J, Martinez-Cristobal P, Noguera E, Sancho A, et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 2013;32:2348–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gupta S, Read DE, Deepti A, Cawley K, Gupta A, Oommen D, et al. Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis. Cell Death Dis. 2012;3:e333–e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu H, Li Z, Wang Y, Yang P, Li Z, Li H, et al. MiR-106b-mediated Mfn2 suppression is critical for PKM2 induced mitochondrial fusion. Am J Cancer Res. 2016;6:2221–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao Y, Chang Y-H, Ren H-R, Lou M, Jiang F-W, Wang J-X, et al. Phthalates induce neurotoxicity by disrupting the Mfn2-PERK axis-mediated endoplasmic reticulum–mitochondria interaction. J Agric Food Chem. 2024;72:7411–22.

    Article  CAS  PubMed  Google Scholar 

  45. Lebeau J, Saunders JM, Moraes VWR, Madhavan A, Madrazo N, Anthony MC, et al. The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Rep. 2018;22:2827–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toyofuku T, Okamoto Y, Ishikawa T, Sasawatari S, Kumanogoh A. LRRK2 regulates endoplasmic reticulum–mitochondrial tethering through the PERK-mediated ubiquitination pathway. EMBO J. 2020;39:e105826.

  47. Danese A, Patergnani S, Bonora M, Wieckowski MR, Previati M, Giorgi C, et al. Calcium regulates cell death in cancer: roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim Biophys Acta Bioenerg. 2017;1858:615–27.

    Article  CAS  PubMed  Google Scholar 

  48. Pedriali G, Rimessi A, Sbano L, Giorgi C, Wieckowski MR, Previati M, et al. Regulation of endoplasmic reticulum-mitochondria Ca2+ transfer and its importance for anti-cancer therapies. Front Oncol. 2017;7:180.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Missiroli S, Bonora M, Patergnani S, Poletti F, Perrone M, Gafà R, et al. PML at mitochondria-associated membranes is critical for the repression of autophagy and cancer development. Cell Rep. 2016;16:2415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan L, Liu Q, Wang Z, Hou J, Xu P. Correction to: EI24 tethers endoplasmic reticulum and mitochondria to regulate autophagy flux. Cell Mol Life Sci. 2020;77:2255–6.

    Article  CAS  PubMed  Google Scholar 

  51. Obara CJ, Nixon-Abell J, Moore AS, Riccio F, Hoffman DP, Shtengel G, et al. Motion of VAPB molecules reveals ER-mitochondria contact site subdomains. Nature. 2024;626:169–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gomez-Suaga P, Paillusson S, Stoica R, Noble W, Hanger DP, Miller CCJ. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol. 2017;27:371–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rasool S, Soya N, Truong L, Croteau N, Lukacs GL, Trempe JF. PINK1 autophosphorylation is required for ubiquitin recognition. EMBO Rep. 2018;19:e44981.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wu W, Li W, Chen H, Jiang L, Zhu R, Feng D. FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy. 2016;12:1675–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu S, Zhang L, Liu C, Yang J, Zhang J, Huang L. PACS2 is required for ox-LDL-induced endothelial cell apoptosis by regulating mitochondria-associated ER membrane formation and mitochondrial Ca2+ elevation. Exp Cell Res. 2019;379:191–202.

    Article  CAS  PubMed  Google Scholar 

  56. Ponneri Babuharisankar A, Kuo CL, Chou HY, Tangeda V, Fan CC, Chen CH, et al. Mitochondrial Lon-induced mitophagy benefits hypoxic resistance via Ca2+-dependent FUNDC1 phosphorylation at the ER-mitochondria interface. Cell Death Dis. 2023;14:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li C, Li L, Yang M, Yang J, Zhao C, Han Y, et al. PACS-2 ameliorates tubular injury by facilitating endoplasmic reticulum-mitochondria contact and mitophagy in diabetic nephropathy. Diabetes. 2022;71:1034–50.

    Article  CAS  PubMed  Google Scholar 

  58. Hausenloy DJ, Yellon DM. The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol. 2003;35:339–41.

    Article  CAS  PubMed  Google Scholar 

  59. Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol. 2015;78:23–34.

    Article  CAS  PubMed  Google Scholar 

  60. Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J, Da Silva CC, et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation. 2013;128:1555–65.

    Article  CAS  PubMed  Google Scholar 

  61. Hall AR, Burke N, Dongworth RK, Kalkhoran SB, Dyson A, Vicencio JM, et al. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 2016;7:e2238–e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O’Shea KM, et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31:1309–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Papanicolaou KN, Ngoh GA, Dabkowski ER, O’Connell KA, Ribeiro RF Jr, Stanley WC, et al. Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am J Physiol Heart Circ Physiol. 2012;302:H167–79.

    Article  CAS  PubMed  Google Scholar 

  64. Thivolet C, Vial G, Cassel R, Rieusset J, Madec AM. Reduction of endoplasmic reticulum- mitochondria interactions in beta cells from patients with type 2 diabetes. PLoS One. 2017;12:e0182027.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wu S, Lu Q, Ding Y, Wu Y, Qiu Y, Wang P, et al. Hyperglycemia-driven inhibition of AMP-activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation. 2019;139:1913–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14:177–85.

    Article  PubMed  Google Scholar 

  67. Dulloo I, Atakpa-Adaji P, Yeh YC, Levet C, Muliyil S, Lu F, et al. iRhom pseudoproteases regulate ER stress-induced cell death through IP(3) receptors and BCL-2. Nat Commun. 2022;13:1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang N, Yu H, Liu T, Zhou Z, Feng B, Wang Y, et al. Bmal1 downregulation leads to diabetic cardiomyopathy by promoting Bcl2/IP3R-mediated mitochondrial Ca2+ overload. Redox Biol. 2023;64:102788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60:1620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu Y, Chen H, Zhang L, Lin X, Li X, Zhuang H, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy. 2021;17:1142–56.

    Article  CAS  PubMed  Google Scholar 

  71. Colles SM, Maxson JM, Carlson SG, Chisolm GM. Oxidized LDL-induced injury and apoptosis in atherosclerosis: potential roles for oxysterols. Trends Cardiovasc Med. 2001;11:131–8.

    Article  CAS  PubMed  Google Scholar 

  72. Moulis M, Grousset E, Faccini J, Richetin K, Thomas G, Vindis C. The multifunctional sorting protein PACS-2 controls mitophagosome formation in human vascular smooth muscle cells through mitochondria-ER contact sites. Cells. 2019;8:638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015;46:903–75.

    Article  PubMed  Google Scholar 

  74. Sutendra G, Michelakis ED. The metabolic basis of pulmonary arterial hypertension. Cell Metab. 2014;19:558–73.

    Article  CAS  PubMed  Google Scholar 

  75. Azad MAK, Huang P, Liu G, Ren W, Teklebrh T, Yan W, et al. Hyperhomocysteinemia and cardiovascular disease in animal model. Amino Acids. 2018;50:3–9.

    Article  CAS  PubMed  Google Scholar 

  76. Esse R, Barroso M, Tavares de Almeida I, Castro R. The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art. Int J Mol Sci. 2019;20:867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen LT, Xu TT, Qiu YQ, Liu NY, Ke XY, Fang L, et al. Homocysteine induced a calcium-mediated disruption of mitochondrial function and dynamics in endothelial cells. J Biochem Mol Toxicol. 2021;35:e22737.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Y, Yao J, Zhang M, Wang Y, Shi X. Mitochondria-associated endoplasmic reticulum membranes (MAMs): Possible therapeutic targets in heart failure. Front Cardiovasc Med. 2023;10:1083935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chaanine AH, Gordon RE, Kohlbrenner E, Benard L, Jeong D, Hajjar RJ. Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ Heart Fail. 2013;6:572–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci USA. 2015;112:11389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gutiérrez T, Parra V, Troncoso R, Pennanen C, Contreras-Ferrat A, Vasquez-Trincado C, et al. Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Commun Signal. 2014;12:68.

    PubMed  PubMed Central  Google Scholar 

  82. Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol. 2018;15:457–70.

    Article  CAS  PubMed  Google Scholar 

  83. Wang J, Zhu P, Li R, Ren J, Zhou H. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 2020;30:101415.

    Article  CAS  PubMed  Google Scholar 

  84. Yu W, Xu M, Zhang T, Zhang Q, Zou C. Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. J Physiol Sci. 2019;69:113–27.

    Article  CAS  PubMed  Google Scholar 

  85. Chen Z, Liu L, Cheng Q, Li Y, Wu H, Zhang W, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep. 2017;18:495–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 2006;99:172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang CY, Lai CH, Kuo CH, Chiang SF, Pai PY, Lin JY, et al. Inhibition of ERK-Drp1 signaling and mitochondria fragmentation alleviates IGF-IIR-induced mitochondria dysfunction during heart failure. J Mol Cell Cardiol. 2018;122:58–68.

    Article  CAS  PubMed  Google Scholar 

  88. Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 2016;12:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tian L, Neuber-Hess M, Mewburn J, Dasgupta A, Dunham-Snary K, Wu D, et al. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J Mol Med. 2017;95:381–93.

    Article  CAS  PubMed  Google Scholar 

  90. Area-Gomez E, de Groof A, Bonilla E, Montesinos J, Tanji K, Boldogh I, et al. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis. 2018;9:335.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Del Prete D, Suski JM, Oulès B, Debayle D, Gay AS, Lacas-Gervais S, et al. Localization and processing of the amyloid-β protein precursor in mitochondria-associated membranes. J Alzheimers Dis. 2017;55:1549–70.

    Article  PubMed  Google Scholar 

  92. Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, et al. Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell. 2006;126:981–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Johri A, Chandra A. Connection lost, MAM: errors in ER-mitochondria connections in neurodegenerative diseases. Brain Sci. 2021;11:1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. D’Adamio L, Castillo PE. Presenilin-ryanodine receptor connection. Proc Natl Acad Sci USA. 2013;110:14825–6.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. Presenilin 2 modulates endoplasmic reticulum-mitochondria coupling by tuning the antagonistic effect of mitofusin 2. Cell Rep. 2016;15:2226–38.

    Article  CAS  PubMed  Google Scholar 

  96. Pera M, Montesinos J, Larrea D, Agrawal RR, Velasco KR, Stavrovskaya IG, et al. Chapter Nine - MAM and C99, key players in the pathogenesis of Alzheimer’s disease. Int Rev Neurobiol. 2020;154:235–78.

  97. Browman DT, Resek ME, Zajchowski LD, Robbins SM. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci. 2006;119:3149–60.

    Article  CAS  PubMed  Google Scholar 

  98. Area-Gomez E, de Groof AJC, Boldogh I, Bird TD, Gibson GE, Koehler CM, et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol. 2009;175:1810–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Newman M, Wilson L, Verdile G, Lim A, Khan I, Moussavi Nik SH, et al. Differential, dominant activation and inhibition of Notch signalling and APP cleavage by truncations of PSEN1 in human disease. Hum Mol Genet. 2013;23:602–17.

    Article  PubMed  Google Scholar 

  100. Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Agrawal RR, et al. Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J. 2017;36:3356–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Colombini M. Ceramide channels and mitochondrial outer membrane permeability. J Bioenerg Biomembr. 2017;49:57–64.

    Article  CAS  PubMed  Google Scholar 

  102. Chen L, Li Y, Zambidis A, Papadopoulos V. ATAD3A: a key regulator of mitochondria-associated diseases. Int J Mol Sci. 2023;24:12511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Peralta S, Goffart S, Williams SL, Diaz F, Garcia S, Nissanka N, et al. ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cholesterol levels. J Cell Sci. 2018;131:jcs217075.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu Y-T, et al. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 2021;37:110139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao Y, Sun X, Hu D, Prosdocimo DA, Hoppel C, Jain MK, et al. ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and bioenergetics defects. Nat Commun. 2019;10:1371.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Medala VK, Gollapelli B, Dewanjee S, Ogunmokun G, Kandimalla R, Vallamkondu J. Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in Alzheimer’s disease. J Neurosci Res. 2021;99:1120–35.

    Article  CAS  PubMed  Google Scholar 

  107. Zhao Y, Hu D, Wang R, Sun X, Ropelewski P, Hubler Z, et al. ATAD3A oligomerization promotes neuropathology and cognitive deficits in Alzheimer’s disease models. Nat Commun. 2022;13:1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha synuclein modulates mitochondrial Ca2+ uptake from ER during cell stimulation and under stress conditions. NPJ Parkinsons Dis. 2023;9:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gómez-Suaga P, Pérez-Nievas BG, Glennon EB, Lau DHW, Paillusson S, Mórotz GM, et al. The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. Acta Neuropathol Commun. 2019;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B. Organization and function of membrane contact sites. Biochim Biophys Acta. 2013;1833:2526–41.

    Article  CAS  PubMed  Google Scholar 

  111. Liu Y, Ma X, Fujioka H, Liu J, Chen S, Zhu X. DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-GRP75-VDAC1. Proc Natl Acad Sci USA. 2019;116:25322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McCoy MK, Cookson MR. DJ-1 regulation of mitochondrial function and autophagy through oxidative stress. Autophagy. 2011;7:531–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bouman L, Schlierf A, Lutz AK, Shan J, Deinlein A, Kast J, et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 2011;18:769–82.

    Article  CAS  PubMed  Google Scholar 

  114. Basso V, Marchesan E, Peggion C, Chakraborty J, von Stockum S, Giacomello M, et al. Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol Res. 2018;138:43–56.

    Article  CAS  PubMed  Google Scholar 

  115. Gelmetti V, De Rosa P, Torosantucci L, Marini ES, Romagnoli A, Di Rienzo M, et al. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy. 2017;13:654–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Calì T, Ottolini D, Negro A, Brini M. Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics. Biochim Biophys Acta. 2013;1832:495–508.

    Article  PubMed  Google Scholar 

  117. Gautier CA, Erpapazoglou Z, Mouton-Liger F, Muriel MP, Cormier F, Bigou S, et al. The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations. Hum Mol Genet. 2016;25:2972–84.

    CAS  PubMed  Google Scholar 

  118. Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun. 2014;5:3996.

    Article  CAS  PubMed  Google Scholar 

  119. Watanabe S, Murata Y, Oka Y, Oiwa K, Horiuchi M, Iguchi Y, et al. Mitochondria-associated membrane collapse impairs TBK1-mediated proteostatic stress response in ALS. Proc Natl Acad Sci USA. 2023;120:e2315347120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stoica R, Paillusson S, Gomez-Suaga P, Mitchell JC, Lau DH, Gray EH, et al. ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep. 2016;17:1326–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rosen D. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;364:362.

    Article  CAS  PubMed  Google Scholar 

  122. Parone PA, Da Cruz S, Han JS, McAlonis-Downes M, Vetto AP, Lee SK, et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J Neurosci. 2013;33:4657–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52:39–59.

    Article  PubMed  Google Scholar 

  124. Vukosavic S, Dubois-Dauphin M, Romero N, Przedborski S. Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem. 1999;73:2460–8.

    Article  CAS  PubMed  Google Scholar 

  125. Israelson A, Arbel N, Da Cruz S, Ilieva H, Yamanaka K, Shoshan-Barmatz V, et al. Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS. Neuron. 2010;67:575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hayashi T, Su T-P. Sigma-1 receptor chaperones at the ER- mitochondrion interface regulate Ca2+ signaling and cell survival. Cell. 2007;131:596–610.

    Article  CAS  PubMed  Google Scholar 

  127. Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol. 2011;70:913–9.

    Article  CAS  PubMed  Google Scholar 

  128. Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, et al. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med. 2016;8:1421–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Prause J, Goswami A, Katona I, Roos A, Schnizler M, Bushuven E, et al. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22:1581–600.

    Article  CAS  PubMed  Google Scholar 

  130. Watanabe S, Horiuchi M, Murata Y, Komine O, Kawade N, Sobue A, et al. Sigma-1 receptor maintains ATAD3A as a monomer to inhibit mitochondrial fragmentation at the mitochondria-associated membrane in amyotrophic lateral sclerosis. Neurobiol Dis. 2023;179:106031.

    Article  CAS  PubMed  Google Scholar 

  131. Zhao Y, Chang J, Zhang B, Tong P, Wang C, Ran D, et al. TLR-5 agonist Salmonella abortus equi flagellin FliC enhances FliC-gD-based DNA vaccination against equine herpesvirus 1 infection. Arch Virol. 2019;164:1371–82.

    Article  CAS  PubMed  Google Scholar 

  132. Crottès D, Guizouarn H, Martin P, Borgese F, Soriani O. The sigma-1 receptor: a regulator of cancer cell electrical plasticity? Front Physiol. 2013;4:175.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gueguinou M, Crottès D, Chantôme A, Rapetti-Mauss R, Potier-Cartereau M, Clarysse L, et al. The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis. Oncogene. 2017;36:3640–7.

    Article  CAS  PubMed  Google Scholar 

  134. Krols M, Bultynck G, Janssens S. ER–Mitochondria contact sites: a new regulator of cellular calcium flux comes into play. J Cell Biol. 2016;214:367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tu BP, Weissman JS. The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell. 2002;10:983–94.

    Article  CAS  PubMed  Google Scholar 

  136. Varone E, Chernorudskiy A, Cherubini A, Cattaneo A, Bachi A, Fumagalli S, et al. ERO1 alpha deficiency impairs angiogenesis by increasing N-glycosylation of a proangiogenic VEGFA. Redox Biol. 2022;56:102455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tanaka T, Kutomi G, Kajiwara T, Kukita K, Kochin V, Kanaseki T, et al. Cancer-associated oxidoreductase ERO1-α promotes immune escape through up-regulation of PD-L1 in human breast cancer. Oncotarget. 2017;8:24706–18.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, et al. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol. 2009;186:783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Anelli T, Bergamelli L, Margittai E, Rimessi A, Fagioli C, Malgaroli A, et al. Ero1α regulates Ca2+ fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxid Redox Signal. 2012;16:1077–87.

    Article  CAS  PubMed  Google Scholar 

  140. Spina A, Guidarelli A, Fiorani M, Varone E, Catalani A, Zito E, et al. Crosstalk between ERO1α and ryanodine receptor in arsenite-dependent mitochondrial ROS formation. Biochem Pharm. 2022;198:114973.

    Article  CAS  PubMed  Google Scholar 

  141. Li J, Qi F, Su H, Zhang C, Zhang Q, Chen Y, et al. GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci. 2022;18:2914–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jefcoate CR, Lee J. Cholesterol signaling in single cells: lessons from STAR and sm-FISH. J Mol Endocrinol. 2018;60:R213–r35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Teng Y, Ren X, Li H, Shull A, Kim J, Cowell JK. Mitochondrial ATAD3A combines with GRP78 to regulate the WASF3 metastasis-promoting protein. Oncogene. 2016;35:333–43.

    Article  CAS  PubMed  Google Scholar 

  144. Venugopal S, Galano M, Chan R, Sanyal E, Issop L, Lee S, et al. Dynamic remodeling of membranes and their lipids during acute hormone-induced steroidogenesis in MA-10 mouse Leydig tumor cells. Int J Mol Sci. 2021;22:2554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen Q, Xu H, Xu A, Ross T, Bowler E, Hu Y, et al. Inhibition of Bcl-2 sensitizes mitochondrial permeability transition pore (MPTP) opening in ischemia-damaged mitochondria. PLoS One. 2015;10:e0118834.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhong F, Davis MC, McColl KS, Distelhorst CW. Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol. 2006;172:127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD, et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol. 2004;166:193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Marchi S, Rimessi A, Giorgi C, Baldini C, Ferroni L, Rizzuto R, et al. Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochem Biophys Res Commun. 2008;375:501–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bononi A, Bonora M, Marchi S, Missiroli S, Poletti F, Giorgi C, et al. Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 2013;20:1631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Duffy MJ, Synnott NC, O’Grady S, Crown J. Targeting p53 for the treatment of cancer. Semin Cancer Biol. 2022;79:58–67.

    Article  CAS  PubMed  Google Scholar 

  151. Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA. 2015;112:1779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Qu YQ, Song LL, Xu SW, Yu MSY, Kadioglu O, Michelangeli F, et al. Pomiferin targets SERCA, mTOR, and P-gp to induce autophagic cell death in apoptosis-resistant cancer cells, and reverses the MDR phenotype in cisplatin-resistant tumors in vivo. Pharmacol Res. 2023;191:106769.

    Article  CAS  PubMed  Google Scholar 

  153. Raturi A, Gutiérrez T, Ortiz-Sandoval C, Ruangkittisakul A, Herrera-Cruz MS, Rockley JP, et al. TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux. J Cell Biol. 2016;214:433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hedgepeth SC, Garcia MI, Wagner LE 2nd, Rodriguez AM, Chintapalli SV, Snyder RR, et al. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release. J Biol Chem. 2015;290:7304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hsu KS, Kao HY. PML: regulation and multifaceted function beyond tumor suppression. Cell Biosci. 2018;8:5.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science. 2010;330:1247–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pinton P, Giorgi C, Pandolfi PP. The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ. 2011;18:1450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Galluzzi L. Novel insights into PML-dependent oncosuppression. Trends Cell Biol. 2016;26:889–90.

    Article  CAS  PubMed  Google Scholar 

  159. Decuypere JP, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgo J, et al. Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy. 2011;7:1472–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN. Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA. 2013;110:12526–34.

    Article  CAS  PubMed  Google Scholar 

  161. Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, et al. PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 2019;68:571–86.

    Article  CAS  PubMed  Google Scholar 

  162. Britto FA, Cortade F, Belloum Y, Blaquière M, Gallot YS, Docquier A, et al. Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress. BMC Biol. 2018;16:65.

    Article  PubMed  Google Scholar 

  163. Beaulant A, Dia M, Pillot B, Chauvin MA, Ji-Cao J, Durand C, et al. Endoplasmic reticulum-mitochondria miscommunication is an early and causal trigger of hepatic insulin resistance and steatosis. J Hepatol. 2022;77:710–22.

    Article  CAS  PubMed  Google Scholar 

  164. Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20:1427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Thoudam T, Chanda D, Lee JY, Jung MK, Sinam IS, Kim BG, et al. Enhanced Ca2+-channeling complex formation at the ER-mitochondria interface underlies the pathogenesis of alcohol-associated liver disease. Nat Commun. 2023;14:1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Stacchiotti A, Favero G, Lavazza A, Golic I, Aleksic M, Korac A, et al. Hepatic macrosteatosis is partially converted to microsteatosis by melatonin supplementation in ob/ob mice non-alcoholic fatty liver disease. PLoS One. 2016;11:e0148115.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Chen L, Xia YF, Shen SF, Tang J, Chen JL, Qian K, et al. Syntaxin 17 inhibits ischemic neuronal injury by resuming autophagy flux and ameliorating endoplasmic reticulum stress. Free Radic Biol Med. 2020;160:319–33.

    Article  CAS  PubMed  Google Scholar 

  168. Arasaki K, Shimizu H, Mogari H, Nishida N, Hirota N, Furuno A, et al. A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Dev Cell. 2015;32:304–17.

    Article  CAS  PubMed  Google Scholar 

  169. Xu H, Yu W, Sun M, Bi Y, Wu NN, Zhou Y, et al. Syntaxin17 contributes to obesity cardiomyopathy through promoting mitochondrial Ca2+ overload in a Parkin-MCUb-dependent manner. Metabolism. 2023;143:155551.

    Article  CAS  PubMed  Google Scholar 

  170. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med. 2010;2:52ra73.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Piccinin E, Sardanelli AM, Seibel P, Moschetta A, Cocco T, Villani G. PGC-1s in the spotlight with Parkinson’s disease. Int J Mol Sci. 2021;22:3487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang ZJ, Zhao F, Wang CF, Zhang XM, Xiao Y, Zhou F, et al. Xestospongin C, a reversible IP3 receptor antagonist, alleviates the cognitive and pathological impairments in APP/PS1 mice of Alzheimer’s disease. J Alzheimers Dis. 2019;72:1217–31.

    Article  CAS  PubMed  Google Scholar 

  173. Hiroi T, Wei H, Hough C, Leeds P, Chuang DM. Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, GRP78 and Bcl-2. Pharmacogenomics J. 2005;5:102–11.

    Article  CAS  PubMed  Google Scholar 

  174. Wiseman AL, Briggs CA, Peritt A, Kapecki N, Peterson DA, Shim SS, et al. Lithium provides broad therapeutic benefits in an Alzheimer’s disease mouse model. J Alzheimers Dis. 2023;91:273–90.

    Article  CAS  PubMed  Google Scholar 

  175. Chu B, Li M, Cao X, Li R, Jin S, Yang H, et al. IRE1α-XBP1 affects the mitochondrial function of Aβ25-35-treated SH-SY5Y cells by regulating mitochondria-associated endoplasmic reticulum membranes. Front Cell Neurosci. 2021;15:614556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Meng M, Jiang Y, Wang Y, Huo R, Ma N, Shen X, et al. β-carotene targets IP3R/GRP75/VDAC1-MCU axis to renovate LPS-induced mitochondrial oxidative damage by regulating STIM1. Free Radic Biol Med. 2023;205:25–46.

    Article  CAS  PubMed  Google Scholar 

  177. Shi R, Liu Z, Yue H, Li M, Liu S, De D, et al. IP(3)R1-mediated MAMs formation contributes to mechanical trauma-induced hepatic injury and the protective effect of melatonin. Cell Mol Biol Lett. 2024;29:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gao Y, Li S, Liu X, Si D, Chen W, Yang F, et al. RyR2 stabilizer attenuates cardiac hypertrophy by downregulating TNF-α/NF-κB/NLRP3 signaling pathway through inhibiting calcineurin. J Cardiovasc Transl Res. 2024;17:481–95.

    Article  PubMed  Google Scholar 

  179. Dai B, Ma X, Tang Y, Xu L, Guo S, Chen X, et al. Design, synthesis, and biological activity of novel semicarbazones as potent Ryanodine receptor1 inhibitors of Alzheimer’s disease. Bioorg Med Chem. 2021;29:115891.

    Article  CAS  PubMed  Google Scholar 

  180. Zhou HY, Sun YY, Chang P, Huang HC. Curcumin inhibits cell damage and apoptosis caused by thapsigargin-induced endoplasmic reticulum stress involving the recovery of mitochondrial function mediated by mitofusin-2. Neurotox Res. 2022;40:449–60.

    Article  CAS  PubMed  Google Scholar 

  181. Ooi K, Hu L, Feng Y, Han C, Ren X, Qian X, et al. Sigma-1 receptor activation suppresses microglia M1 polarization via regulating endoplasmic reticulum-mitochondria contact and mitochondrial functions in stress-induced hypertension rats. Mol Neurobiol. 2021;58:6625–46.

    Article  CAS  PubMed  Google Scholar 

  182. Crouzier L, Danese A, Yasui Y, Richard EM, Liévens JC, Patergnani S, et al. Activation of the sigma-1 receptor chaperone alleviates symptoms of Wolfram syndrome in preclinical models. Sci Transl Med. 2022;14:eabh3763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang Z, Zhou H, Gu W, Wei Y, Mou S, Wang Y, et al. CGI1746 targets σ1R to modulate ferroptosis through mitochondria-associated membranes. Nat Chem Biol. 2024;20:699–709.

    Article  CAS  PubMed  Google Scholar 

  184. Zhou Z, Torres M, Sha H, Halbrook CJ, Van den Bergh F, Reinert RB, et al. Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science. 2020;368:54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cardoen B, Vandevoorde KR, Gao G, Ortiz-Silva M, Alan P, Liu W, et al. Membrane contact site detection (MCS-DETECT) reveals dual control of rough mitochondria-ER contacts. J Cell Biol. 2024;223:e202206109.

    Article  CAS  PubMed  Google Scholar 

  186. Vue Z, Garza-Lopez E, Neikirk K, Katti P, Vang L, Beasley H, et al. 3D reconstruction of murine mitochondria reveals changes in structure during aging linked to the MICOS complex. Aging Cell. 2023;22:e14009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tur J, Pereira-Lopes S, Vico T, Marín EA, Muñoz JP, Hernández-Alvarez M, et al. Mitofusin 2 in macrophages links mitochondrial ROS production, cytokine release, phagocytosis, autophagy, and bactericidal activity. Cell Rep. 2020;32:108079.

    Article  CAS  PubMed  Google Scholar 

  188. Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun. 2020;8:189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhu W, Liu F, Wang L, Yang B, Bai Y, Huang Y, et al. pPolyHb protects myocardial H9C2 cells against ischemia-reperfusion injury by regulating the Pink1-Parkin-mediated mitochondrial autophagy pathway. Artif Cells Nanomed Biotechnol. 2019;47:1248–55.

    Article  CAS  PubMed  Google Scholar 

  190. Li FH, Xiang L, Ran L, Zhou S, Huang Z, Chen M, et al. BNIP1 inhibits cell proliferation, migration and invasion, and promotes apoptosis by mTOR in cervical cancer cells. Eur Rev Med Pharm Sci. 2019;23:1397–407.

    Google Scholar 

  191. Wang C, Dai X, Wu S, Xu W, Song P, Huang K. FUNDC1-dependent mitochondria-associated endoplasmic reticulum membranes are involved in angiogenesis and neoangiogenesis. Nat Commun. 2021;12:2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Liu Y, Jin M, Wang Y, Zhu J, Tan R, Zhao J, et al. MCU-induced mitochondrial calcium uptake promotes mitochondrial biogenesis and colorectal cancer growth. Signal Transduct Target Ther. 2020;5:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yeo HK, Park TH, Kim HY, Jang H, Lee J, Hwang GS, et al. Phospholipid transfer function of PTPIP51 at mitochondria-associated ER membranes. EMBO Rep. 2021;22:e51323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Smedley GD, Walker KE, Yuan SH. The role of PERK in understanding development of neurodegenerative diseases. Int J Mol Sci. 2021;22:8146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kim MJ, Ku JM, Hong SH, Kim HI, Kwon YY, Park JS, et al. In vitro anticancer effects of JI017 on two prostate cancer cell lines involve endoplasmic reticulum stress mediated by elevated levels of reactive oxygen species. Front Pharmacol. 2021;12:683575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Glembotski CC, Arrieta A, Blackwood EA, Stauffer WT. ATF6 as a nodal regulator of proteostasis in the heart. Front Physiol. 2020;11:267.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Shi M, Chen F, Chen Z, Yang W, Yue S, Zhang J, et al. Sigma-1 receptor: a potential therapeutic target for traumatic brain injury. Front Cell Neurosci. 2021;15:685201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Amanakis G, Murphy E. Cyclophilin D: an integrator of mitochondrial function. Front Physiol. 2020;11:595.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 82173811, 81973315), Jiangsu Key Laboratory of Neuropsychiatric Diseases (BM2013003), the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD) and Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Wb., Sheng, R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01359-9

Keywords

Search

Quick links