Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recombinant human adenovirus type 5 promotes anti-tumor immunity via inducing pyroptosis in tumor endothelial cells

Abstract

Recombinant human type 5 adenovirus (H101) is an oncolytic virus used to treat nasopharyngeal carcinoma. Owing to the deletion of the E1B-55kD and E3 regions, H101 is believed to selectively inhibit nasopharyngeal carcinoma. Whether H101 inhibits other type of tumors via different mechanisms remains unclear. In this study we investigated the effects of H101 on melanomas. We established B16F10 melanoma xenograft mouse model, and treated the mice with H101 (1 × 108 TCID50) via intratumoral injection for five consecutive days. We found that H101 treatment significantly inhibited B16F10 melanoma growth in the mice. H101 treatment significantly increased the infiltration of CD8+ T cells and reduced the proportion of M2-type macrophages. We demonstrated that H101 exhibited low cytotoxicity against B16F10 cells, but the endothelial cells were more sensitive to H101 treatment. H101 induced endothelial cell pyroptosis in a caspase-1/GSDMD-dependent manner. Furthermore, we showed that the combination of H101 with the immune checkpoint inhibitor PD-L1 antibody (10 mg/kg, i.p., every three days for three times) exerted synergic suppression on B16F10 tumor growth in the mice. This study demonstrates that, in addition to oncolysis, H101 inhibits melanoma growth by promoting anti-tumor immunity and inducing pyroptosis of vascular endothelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H101 inhibits B16F10 tumor growth in vivo.
Fig. 2: H101 promotes the infiltration of immune cells to inhibit melanoma.
Fig. 3: H101 has low cytotoxicity on B16F10 cells, but can induce HUVEC death in vitro.
Fig. 4: H101 induces the pyroptosis of endothelial cells via caspase-1/GSDMD.
Fig. 5: Pyroptosis inhibitor Z-VAD-FMK reverses the tumor suppression effect of H101.
Fig. 6: Combination therapy of H101 and PD-L1 antibody enhances tumor suppression.

Similar content being viewed by others

References

  1. Long GV, Swetter SM, Menzies AM, Gershenwald JE, Scolyer RA. Cutaneous melanoma. Lancet. 2023;402:485–502.

    Article  PubMed  Google Scholar 

  2. Kalaora S, Nagler A, Wargo JA, Samuels Y. Mechanisms of immune activation and regulation: lessons from melanoma. Nat Rev Cancer. 2022;22:195–207.

    Article  CAS  PubMed  Google Scholar 

  3. Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin SB, et al. Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.

    Article  Google Scholar 

  4. Whiteman DC, Green AC, Olsen CM. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136:1161–71.

    Article  CAS  PubMed  Google Scholar 

  5. Curti BD, Faries MB. Recent advances in the treatment of melanoma. N Engl J Med. 2021;384:2229–40.

    Article  CAS  PubMed  Google Scholar 

  6. Sun Q, Hong ZY, Zhang C, Wang LL, Han ZQ, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther. 2023;8:320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng G, Dong H, Yang C, Liu Y, Wu Y, Zhu LF, et al. A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell Int. 2021;21:406-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang H, Wang HB, Zhang JJ, Qian GX, Niu BB, Fan XQ, et al. Enhanced therapeutic efficacy by simultaneously targeting two genetic defects in tumors. Mol Ther. 2009;17:57–64.

    Article  PubMed  Google Scholar 

  9. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14:642–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020;13:84.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huang LL, Zhao HX, Shan MY, Chen H, Xu B, He Y, et al. Oncolytic adenovirus H101 ameliorate the efficacy of anti-PD-1 monotherapy in colorectal cancer. Cancer Med. 2022;11:4575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma JF, Zhao JM, Lu J, Jiang YN, Yang HY, Li P, et al. Coxsackievirus and adenovirus receptor promotes antitumor activity of oncolytic adenovirus H101 in esophageal cancer. Int J Mol Med. 2012;30:1403–9.

    Article  CAS  PubMed  Google Scholar 

  13. Arulanandam R, Batenchuk C, Angarita Fernando A, Ottolino-Perry K, Cousineau S, Mottashed A, et al. VEGF-Mediated Induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell. 2015;28:210–24.

    Article  CAS  PubMed  Google Scholar 

  14. Luo MN, Hou L, Li J, Shao S, Huang SK, Meng D, et al. VEGF/NRP-1axis promotes progression of breast cancer via enhancement of epithelial-mesenchymal transition and activation of NF-κB and β-catenin. Cancer Lett. 2016;373:1–11.

    Article  CAS  PubMed  Google Scholar 

  15. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–4.

    Article  CAS  PubMed  Google Scholar 

  16. Fang JW, Lu Y, Zheng JY, Jiang XC, Shen HX, Shang X, et al. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis. 2023;14:586.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu SC, Qin TT, Liu ZJ, Wang J, Jia YN, Fend YF, et al. anlotinib alters tumor immune microenvironment by downregulating PD-L1 expression on vascular endothelial cells. Cell Death Dis. 2020;11:309.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marech I, Leporini C, Ammendola M, Porcelli M, Gadaleta CD, Russo E, et al. Classical and non-classical proangiogenic factors as a target of antiangiogenic therapy in tumor microenvironment. Cancer Lett. 2016;380:216–26.

    Article  CAS  PubMed  Google Scholar 

  19. Wu XX, Zhang HY, Qi W, Zhang Y, Li JM, Li ZG, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 2018;9:171.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cheng KT, Xiong SQ, Ye ZM, Hong ZG, Di AK, Tsang KM, et al. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest. 2017;127:4124–35.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zheng FF, Ma LQ, Li X, Wang ZH, Gao RF, Peng CA, et al. Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease. Diabetes. 2022;71:2739–50.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu J, Chen H, Le YF, Guo JA, Liu ZJ, Dou XB, et al. Salvianolic acid a regulates pyroptosis of endothelial cells directly targeting PKM2 and ameliorates diabetic atherosclerosis. Front Pharmacol. 2022;13:1009229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pober JS, Min W, Bradley JR. Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol-Mech. 2009;4:71–95.

    Article  CAS  Google Scholar 

  24. Verhoeven J, Jacobs KA, Rizzollo F, Lodi F, Hua YC, Pozniak J, et al. Tumor endothelial cell autophagy is a key vascular-immune checkpoint in melanoma. EMBO Mol Med. 2023;15:e18028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan YX, Chen QZ, Li XL, Zeng ZY, Xiong W, Li GY, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res. 2021;40:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi JJ, Zhao Y, Wang K, Shi XY, Wang Y, Huang HW, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  27. Liu ZJ, Gan L, Xu YT, Luo D, Ren Q, Wu S, et al. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res. 2017; 63:e12414.

  28. Zhang HH, Wei R, Yang XY, Xu L, Jiang HC, Li MK, et al. AMFR drives allergic asthma development by promoting alveolar macrophage–derived GM-CSF production. J Exp Med. 2022;219:e20211828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song X, Zhou YX, Jia RB, Xu XF, Wang HB, Hu JF, et al. Inhibition of retinoblastoma in vitro and in vivo with conditionally replicating oncolytic adenovirus H101. Invest Ophthalmol Vis Sci. 2010;51:2626–35.

    Article  PubMed  Google Scholar 

  30. Lei J, Li QH, Yang JL, Liu F, Wang L, Xu WM, et al. The antitumor effects of oncolytic adenovirus H101 against lung cancer. Int J Oncol. 2015;47:555–62.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Wang YC, Lv XJ, Wang FF, Zhou Q, Zhang FY, et al. Intratumoral injection of oncolytic virus (H101) in combination with concurrent chemoradiotherapy for locally advanced cervical cancer. Int J Gynecol Cancer. 2023;33:1051–6.

    Article  PubMed  Google Scholar 

  32. Kottke T, Hall G, Pulido J, Diaz RM, Thompson J, Chong H, et al. Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. J Clin Invest. 2010;120:1551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tseng JC, Granot T, DiGiacomo V, Levin B, Meruelo D. Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther. 2010;17:244–55.

    Article  CAS  PubMed  Google Scholar 

  34. Kim M, Nitschké M, Sennino B, Murer P, Schriver BJ, Bell A, et al. Amplification of oncolytic vaccinia virus widespread tumor cell killing by sunitinib through multiple mechanisms. Cancer Res. 2018;78:922–37.

    Article  CAS  PubMed  Google Scholar 

  35. Ong HT, Trejo TR, Pham LD, Oberg AL, Russell SJ, Peng KW. Intravascularly administered RGD-displaying measles viruses bind to and infect neovessel endothelial cells in vivo. Mol Ther. 2009;17:1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Breitbach CJ, De Silva NS, Falls TJ, Aladl U, Evgin L, Paterson J, et al. Targeting tumor vasculature with an oncolytic virus. Mol Ther. 2011;19:886–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hou WZ, Chen H, Rojas J, Sampath P, Thorne SH. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int J Cancer. 2014;135:1238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gil M, Seshadri M, Komorowski MP, Abrams SI, Kozbor D. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci USA. 2013;110:E1291–E300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang XX. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015;21:24–33.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Liu L, Liu JB, Dang PY, Hu SY, Yuan WT, et al. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer. 2023;22:58.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yi M, Zheng XL, Niu MK, Zhu SL, Ge H, Wu KM. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21:28.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee PH, Yamamoto TN, Gurusamy D, Sukumar M, Yu ZY, Hu-Li J, et al. Host conditioning with IL-1β improves the antitumor function of adoptively transferred T cells. J Exp Med. 2019;216:2619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao Q, Wang SM, Li F, Lian JY, Cheng SY, Yue DL, et al. High mobility group protein B1 decreases surface localization of PD-1 to augment T-cell activation. Cancer Immunol Res. 2022;10:844–55.

    Article  CAS  PubMed  Google Scholar 

  44. Ma ZF, Li W, Yoshiya S, Xu YF, Hata M, El-Darawish Y, et al. Augmentation of immune checkpoint cancer immunotherapy with IL18. Clin Cancer Res. 2016;22:2969–80.

    Article  CAS  PubMed  Google Scholar 

  45. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Milenova I, Gonzalez ML, Quixabeira DCA, Santos JM, Cervera-Carrascon V, Dong WL, et al. Oncolytic adenovirus ORCA-010 activates proinflammatory myeloid cells and facilitates T cell recruitment and activation by PD-1 blockade in melanoma. Hum Gene Ther. 2021;32:178–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2023YFA0913700), National Natural Science Foundation of China (82073858, 82173821, 82273934, and 82373875), Natural Science Foundation of Shanghai (21ZR1432700), the open project of Anhui Province Key Laboratory of Translational Cancer Research (KFKT202302), Anhui Province Scientific Research Compilation Plan Project (2022AH040214), Anhui Province Translational Special Project for Clinical Medical Research (202204295107020038), Shanghai Society of Biotechnology (SSBT), Key Research and Development Projects in Anhui Province for A (202104j07020021).

Author information

Authors and Affiliations

Authors

Contributions

FQ, LS, and ZSW conceived the study. ZSW, MKL, and QLY performed and interpreted experimental data. LS, FQ, ZMW, MKL, and QLY wrote the paper. SXD, XYL, XYY, YL, YWZ, and YQ prepared figures. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zi-shu Wang, Lei Sun or Feng Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zm., Li, Mk., Yang, Ql. et al. Recombinant human adenovirus type 5 promotes anti-tumor immunity via inducing pyroptosis in tumor endothelial cells. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01349-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01349-x

Keywords

Search

Quick links