Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromodomain Y‐like (CDYL) inhibition ameliorates acute kidney injury in mice by regulating tubular pyroptosis

Abstract

Acute kidney injury (AKI) is a common disease, but lacking effective drug treatments. Chromodomain Y‐like (CDYL) is a kind of chromodomain protein that has been implicated in transcription regulation of autosomal dominant polycystic kidney disease. Benzo[d]oxazol-2(3H)-one derivative (compound D03) is the first potent and selective small-molecule inhibitor of CDYL (KD = 0.5 μM). In this study, we investigated the expression of CDYL in three different models of cisplatin (Cis)-, lipopolysaccharide (LPS)- and ischemia/reperfusion injury (IRI)-induced AKI mice. By conducting RNA sequencing and difference analysis of kidney samples, we found that tubular CDYL was abnormally and highly expressed in injured kidneys of AKI patients and mice. Overexpression of CDYL in cisplatin-induced AKI mice aggravated tubular injury and pyroptosis via regulating fatty acid binding protein 4 (FABP4)-mediated reactive oxygen species production. Treatment of cisplatin-induced AKI mice with compound D03 (2.5 mg·kg−1·d−1, i.p.) effectively attenuated the kidney dysfunction, pathological damages and tubular pyroptosis without side effects on liver or kidney function and other tissue injuries. Collectively, this study has, for the first time, explored a novel aspect of CDYL for tubular epithelial cell pyroptosis in kidney injury, and confirmed that inhibition of CDYL might be a promising therapeutic strategy against AKI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The abnormal expression of CDYL in acute kidney injury.
Fig. 2: CDYL overexpression aggravated kidney injury and pyroptosis in cisplatin-induced mice.
Fig. 3: CDYL overexpression aggravated tubular cells injury and pyroptosis in cisplatin-stimulated TCMK-1 cells.
Fig. 4: CDYL inhibitor alleviated kidney injury and decreased cell pyroptosis in cisplatin-induced AKI mice.
Fig. 5: The inhibition of CDYL improved tubular cell injury and pyroptosis in vitro.
Fig. 6: CDYL regulate the expression of FABP4.
Fig. 7: CDYL triggered pyroptosis via regulating FABP4 expression and influencing ROS production in injured kidneys.

Similar content being viewed by others

Data availability

All data supporting this research have been included in this manuscript and its supplementary information files. Additional data are available from the corresponding author on request.

References

  1. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66. https://doi.org/10.1016/s0140-6736(11)61454-2.

    Article  PubMed  Google Scholar 

  2. Yang L, Wang B, Guo F, Huang R, Liang Y, Li L, et al. FFAR4 improves the senescence of tubular epithelial cells by AMPK/SirT3 signaling in acute kidney injury. Signal Transduct Target Ther. 2022;7:384 https://doi.org/10.1038/s41392-022-01254-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wang B, Xu J, Fu P, Ma L. MicroRNAs in septic acute kidney injury. Burns Trauma. 2023;11:tkad008. https://doi.org/10.1093/burnst/tkad008.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehta RL, Cerdá J, Burdmann EA, Tonelli M, García-García G, Jha V, et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385:2616–43. https://doi.org/10.1016/s0140-6736(15)60126-x.

    Article  PubMed  Google Scholar 

  5. Wiersema R, Eck RJ, Haapio M, Koeze J, Poukkanen M, Keus F, et al. Burden of acute kidney injury and 90-day mortality in critically ill patients. BMC Nephrol. 2019;21:1 https://doi.org/10.1186/s12882-019-1645-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fu Y, Tang C, Cai J, Chen G, Zhang D, Dong Z. Rodent models of AKI-CKD transition. Am J Physiol Ren Physiol. 2018;315:F1098–106. https://doi.org/10.1152/ajprenal.00199.2018.

    Article  CAS  Google Scholar 

  7. Liu N, Li D, Liu D, Liu Y, Lei J. FOSL2 participates in renal fibrosis via SGK1-mediated epithelial-mesenchymal transition of proximal tubular epithelial cells. J Transl Int Med. 2023;11:294–308. https://doi.org/10.2478/jtim-2023-0105.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121:4210–21. https://doi.org/10.1172/jci45161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Li L, Xiang T, Guo J, Guo F, Wu Y, Feng H, et al. Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence. Nat Commun. 2024;15:3200 https://doi.org/10.1038/s41467-024-47315-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sancho-Martínez SM, López-Novoa JM, López-Hernández FJ. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin Kidney J. 2015;8:548–59. https://doi.org/10.1093/ckj/sfv069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Miao N, Yin F, Xie H, Wang Y, Xu Y, Shen Y, et al. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int. 2019;96:1105–20. https://doi.org/10.1016/j.kint.2019.04.035.

    Article  PubMed  CAS  Google Scholar 

  12. Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 2017;27:673–84. https://doi.org/10.1016/j.tcb.2017.05.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jiang S, Zhang H, Li X, Yi B, Huang L, Hu Z, et al. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/Caspase-1/GSDMD pyroptosis pathway. J Steroid Biochem Mol Biol. 2021;206:105789 https://doi.org/10.1016/j.jsbmb.2020.105789.

    Article  PubMed  CAS  Google Scholar 

  14. Pang Y, Zhang PC, Lu RR, Li HL, Li JC, Fu HX, et al. Andrade-Oliveira salvianolic acid B modulates caspase-1-mediated pyroptosis in renal ischemia-reperfusion injury via Nrf2 pathway. Front Pharmacol. 2020;11:541426 https://doi.org/10.3389/fphar.2020.541426.

    Article  CAS  Google Scholar 

  15. Caron C, Pivot-Pajot C, van Grunsven LA, Col E, Lestrat C, Rousseaux S, et al. Cdyl: a new transcriptional co-repressor. EMBO Rep. 2003;4:877–82. https://doi.org/10.1038/sj.embor.embor917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, et al. Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci USA. 2002;99:8707–12. https://doi.org/10.1073/pnas.082248899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, et al. Dynamic profiles and transcriptional preferences of histone modifications during spermiogenesis. Endocrinology. 2021;162. https://doi.org/10.1210/endocr/bqaa210.

  18. Sun ZW, Waybright JM, Beldar S, Chen L, Foley CA, Norris-Drouin JL, et al. Cdyl deficiency brakes neuronal excitability and nociception through promoting Kcnb1 transcription in peripheral sensory neurons. Adv Sci (Weinh). 2022;9:e2104317. https://doi.org/10.1002/advs.202104317.

    Article  PubMed  Google Scholar 

  19. Liu Y, Lai S, Ma W, Ke W, Zhang C, Liu S, et al. CDYL suppresses epileptogenesis in mice through repression of axonal Nav1.6 sodium channel expression. Nat Commun. 2017;8:355. https://doi.org/10.1038/s41467-017-00368-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yu H, Bu C, Liu Y, Gong T, Liu X, Liu S, et al. Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination-mediated DNA repair. Sci Adv. 2020;6:eaay4697. https://doi.org/10.1126/sciadv.aay4697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dang L, Cao X, Zhang T, Sun Y, Tian S, Gong T, et al. Nuclear condensation of CDYL links histone crotonylation and cystogenesis in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2022;33:1708–25. https://doi.org/10.1681/asn.2021111425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yang L, Liu Y, Fan M, Zhu G, Jin H, Liang J, et al. Identification and characterization of benzo[d]oxazol-2(3H)-one derivatives as the first potent and selective small-molecule inhibitors of chromodomain protein CDYL. Eur J Med Chem. 2019;182:111656. https://doi.org/10.1016/j.ejmech.2019.111656.

    Article  PubMed  CAS  Google Scholar 

  23. Tan Z, Guo F, Huang Z, Xia Z, Liu J, Tao S, et al. Pharmacological and genetic inhibition of fatty acid-binding protein 4 alleviated cisplatin-induced acute kidney injury. J Cell Mol Med. 2019;23:6260–70. https://doi.org/10.1111/jcmm.14512.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shi M, Huang R, Guo F, Li L, Feng Y, Wei Z, et al. Pharmacological inhibition of fatty acid-binding protein 4 (FABP4) protects against renal ischemia-reperfusion injury. RSC Adv. 2018;8:15207–14. https://doi.org/10.1039/c8ra00122g.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Luo C, Zhou S, Zhou Z, Liu Y, Yang L, Liu J, et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J Am Soc Nephrol. 2018;29:1238–56. https://doi.org/10.1681/asn.2017050574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhou L, Li Y, Zhou D, Tan RJ, Liu Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J Am Soc Nephrol. 2013;24:771–85. https://doi.org/10.1681/asn.2012080865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, et al. Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J Am Soc Nephrol. 2016;27:1727–40. https://doi.org/10.1681/asn.2015040449.

    Article  PubMed  CAS  Google Scholar 

  28. Li H, Dixon EE, Wu H, Humphreys BD. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 2022;34:1977–98.e9 https://doi.org/10.1016/j.cmet.2022.09.026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang B, Xu J, Ren Q, Cheng L, Guo F, Liang Y, et al. Fatty acid-binding protein 4 is a therapeutic target for septic acute kidney injury by regulating inflammatory response and cell apoptosis. Cell Death Dis. 2022;13:333. https://doi.org/10.1038/s41419-022-04794-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu J, Huang R, Li X, Guo F, Li L, Zeng X, et al. Genetic inhibition of FABP4 attenuated endoplasmic reticulum stress and mitochondrial dysfunction in rhabdomyolysis-induced acute kidney injury. Life Sci. 2021;268:119023. https://doi.org/10.1016/j.lfs.2021.119023.

    Article  PubMed  CAS  Google Scholar 

  31. Lei CX, Xie YJ, Li SJ, Jiang P, Du JX, Tian JJ. Fabp4 contributes toward regulating inflammatory gene expression and oxidative stress in Ctenopharyngodon idella. Comp Biochem Physiol B Biochem Mol Biol. 2022;259:110715. https://doi.org/10.1016/j.cbpb.2022.110715.

    Article  PubMed  CAS  Google Scholar 

  32. Wu G, Yang L, Xu Y, Jiang X, Jiang X, Huang L, et al. FABP4 induces asthmatic airway epithelial barrier dysfunction via ROS-activated FoxM1. Biochem Biophys Res Commun. 2018;495:1432–9. https://doi.org/10.1016/j.bbrc.2017.11.106.

    Article  PubMed  CAS  Google Scholar 

  33. Kim YG, Kim SM, Kim KP, Lee SH, Moon JY. The role of inflammasome-dependent and inflammasome-independent NLRP3 in the kidney. Cells. 2019;8:1389 https://doi.org/10.3390/cells8111389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol. 2019;10:2538. https://doi.org/10.3389/fimmu.2019.02538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu Y, Liu S, Yuan S, Yu H, Zhang Y, Yang X, et al. Chromodomain protein CDYL is required for transmission/restoration of repressive histone marks. J Mol Cell Biol. 2017;9:178–94. https://doi.org/10.1093/jmcb/mjx013.

    Article  PubMed  CAS  Google Scholar 

  36. Abu-Zhayia ER, Awwad SW, Ben-Oz BM, Khoury-Haddad H, Ayoub N. CDYL1 fosters double-strand break-induced transcription silencing and promotes homology-directed repair. J Mol Cell Biol. 2018;10:341–57. https://doi.org/10.1093/jmcb/mjx050.

    Article  PubMed  CAS  Google Scholar 

  37. Liu S, Yu H, Liu Y, Liu X, Zhang Y, Bu C, et al. Chromodomain protein CDYL acts as a Crotonyl-CoA hydratase to regulate histone crotonylation and spermatogenesis. Mol Cell. 2017;67:853–66. https://doi.org/10.1016/j.molcel.2017.07.011.

    Article  PubMed  CAS  Google Scholar 

  38. Xia X, Zhou X, Quan Y, Hu Y, Xing F, Li Z, et al. Germline deletion of Cdyl causes teratozoospermia and progressive infertility in male mice. Cell Death Dis. 2019;10:229 https://doi.org/10.1038/s41419-019-1455-y.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qin R, Cao S, Lyu T, Qi C, Zhang W, Wang Y. CDYL deficiency disrupts neuronal migration and increases susceptibility to epilepsy. Cell Rep. 2017;18:380–90. https://doi.org/10.1016/j.celrep.2016.12.043.

    Article  PubMed  CAS  Google Scholar 

  40. Qi C, Liu S, Qin R, Zhang Y, Wang G, Shang Y, et al. Coordinated regulation of dendrite arborization by epigenetic factors CDYL and EZH2. J Neurosci. 2014;34:4494–508. https://doi.org/10.1523/jneurosci.3647-13.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu Y, Li M, Fan M, Song Y, Yu H, Zhi X, et al. Chromodomain Y-like protein-mediated histone crotonylation regulates stress-induced depressive behaviors. Biol Psychiatry. 2019;85:635–49. https://doi.org/10.1016/j.biopsych.2018.11.025.

    Article  PubMed  CAS  Google Scholar 

  42. Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–57. https://doi.org/10.2215/cjn.00330705.

    Article  PubMed  Google Scholar 

  43. Canaud G, Brooks CR, Kishi S, Taguchi K, Nishimura K, Magassa S, et al. Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci Transl Med. 2019;11. https://doi.org/10.1126/scitranslmed.aav4754.

  44. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16:535–43. https://doi.org/10.1038/nm.2144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wan L, Hu X, Xia T, Li F, Chi Q, Ma H, et al. Disruption of Cdyl gene impairs mouse lung epithelium differentiation and maturation. Gene. 2023;853:147088. https://doi.org/10.1016/j.gene.2022.147088.

    Article  PubMed  CAS  Google Scholar 

  46. Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs–mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11:592–605. https://doi.org/10.1038/nrendo.2015.122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Huang Y, Yong P, Dickey D, Vora SM, Wu H, Bernlohr DA. Inflammasome activation and pyroptosis via a lipid-regulated SIRT1-p53-ASC axis in macrophages from male mice and humans. Endocrinology. 2022;163. https://doi.org/10.1210/endocr/bqac014.

  48. Yang J, Liu S, Li Y, Fan Z, Meng Y, Zhou B, et al. FABP4 in macrophages facilitates obesity-associated pancreatic cancer progression via the NLRP3/IL-1β axis. Cancer Lett. 2023;575:216403. https://doi.org/10.1016/j.canlet.2023.216403.

    Article  PubMed  CAS  Google Scholar 

  49. Steen KA, Xu H, Bernlohr DA. FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2. Mol Cell Biol. 2017;37. https://doi.org/10.1128/mcb.00282-16.

  50. Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022;13:1039241. https://doi.org/10.3389/fimmu.2022.1039241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu L, Liu TT, Xie GG, Zhu XQ, Wang Y. Ubiquitin ligase TRIM32 promotes dendrite arborization by mediating degradation of the epigenetic factor CDYL. FASEB J. 2022;36:e22087 https://doi.org/10.1096/fj.202100031RR.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82370737 to LM and 82100775 to LL), and the 1.3.5 project for disciplines of excellence from West China Hospital of Sichuan University (ZYGD23015 to PF).

Author information

Authors and Affiliations

Authors

Contributions

LM, LZL, and TX designed the experiments. TX, LZL, JXL, XYC, YTW, XYC, and FG conducted the experiments. YTW and JXL performed the bioinformatic analyses. LL, TX, RHX, HPW, and LM analyzed the data. TX, LZL, and LM wrote the manuscript. LM, LL, and PF revised the manuscript. All authors helped to interpret the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lin Lin or Liang Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, T., Li, Lz., Li, Jx. et al. Chromodomain Y‐like (CDYL) inhibition ameliorates acute kidney injury in mice by regulating tubular pyroptosis. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01345-1

Keywords

Search

Quick links