Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geniposide alleviates heart failure with preserved ejection fraction in mice by regulating cardiac oxidative stress via MMP2/SIRT1/GSK3β pathway

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3β, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 μM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3β pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3β pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF.

GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3β, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3β signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GE alleviates HFD + L-NAME-induced cardiac impairment in mice.
Fig. 2: GE alleviates HL-induced cardiac impairment in mice.
Fig. 3: GE ameliorates cardiac inflammation and apoptosis in the HFpEF mouse model.
Fig. 4: GE ameliorates cardiac fibrosis and metabolic disorders in HFpEF mice.
Fig. 5: GE alleviates oxidative stress mediated by MMP2 in HFpEF mice.
Fig. 6: GE alleviates H2O2-induced oxidative stress injury in H9c2 cells.
Fig. 7: GE-alleviated H2O2-induced oxidative stress in H9c2 cells is dependent on MMP2.

Similar content being viewed by others

References

  1. Dzhioeva O, Belyavskiy E. Diagnosis and management of patients with heart failure with preserved ejection fraction (HFpEF): current perspectives and recommendations. Ther Clin Risk Manag. 2020;16:769–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murphy SP, Ibrahim NE, Januzzi JL Jr. Heart failure with reduced ejection fraction: a review. JAMA. 2020;324:488–504.

    Article  PubMed  Google Scholar 

  3. Pagel PS, Tawil JN, Boettcher BT, Izquierdo DA, Lazicki TJ, Crystal GJ, et al. Heart failure with preserved ejection fraction: a comprehensive review and update of diagnosis, pathophysiology, treatment, and perioperative implications. J Cardiothorac Vasc Anesth. 2021;35:1839–59.

    Article  PubMed  Google Scholar 

  4. Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2021;18:400–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kumar AA, Kelly DP, Chirinos JA. Mitochondrial dysfunction in heart failure with preserved ejection fraction. Circulation. 2019;139:1435–50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhou Y, Zhu Y, Zeng J. Research update on the pathophysiological mechanisms of heart failure with preserved ejection fraction. Curr Mol Med. 2023;23:54–62.

    Article  CAS  PubMed  Google Scholar 

  7. Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Lee TYT, Mahmud Z, et al. Junctophilin-2 is a target of matrix metalloproteinase-2 in myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2019;114:42.

    Article  PubMed  Google Scholar 

  8. Ali MA, Fan X, Schulz R. Cardiac sarcomeric proteins: novel intracellular targets of matrix metalloproteinase-2 in heart disease. Trends Cardiovasc Med. 2011;21:112–8.

    Article  CAS  PubMed  Google Scholar 

  9. Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 1995;270:5872–6.

    Article  CAS  PubMed  Google Scholar 

  10. Guo XG, Uzui H, Mizuguchi T, Ueda T, Chen JZ, Lee JD. Imidaprilat inhibits matrix metalloproteinase-2 activity in human cardiac fibroblasts induced by interleukin-1beta via NO-dependent pathway. Int J Cardiol. 2008;126:414–20.

    Article  PubMed  Google Scholar 

  11. Miranda-Silva D, Lima T, Rodrigues P, Leite-Moreira A, Falcao-Pires I. Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Fail Rev. 2021;26:453–78.

    Article  PubMed  Google Scholar 

  12. Wang J, De-Qiong X, Hong DQ, Zhang QQ, Zhang J. Attenuation of myocardial ischemia reperfusion injury by geniposide preconditioning in diabetic rats. Curr Res Transl Med. 2019;67:35–40.

    PubMed  Google Scholar 

  13. Tu Y, Li L, Zhu L, Guo Y, Du S, Zhang Y, et al. Geniposide attenuates hyperglycemia-induced oxidative stress and inflammation by activating the Nrf2 signaling pathway in experimental diabetic retinopathy. Oxid Med Cell Longev. 2021;2021:9247947.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shen B, Feng H, Cheng J, Li Z, Jin M, Zhao L, et al. Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways. J Cell Mol Med. 2020;24:5097–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang L, Bi L, Jin L, Wang Y, Li Y, Li Z, et al. Geniposide ameliorates liver fibrosis through reducing oxidative stress and inflammatory respose, inhibiting apoptosis and modulating overall metabolism. Front Pharmacol. 2021;12:772635.

    Article  CAS  Google Scholar 

  16. Del Buono MG, Iannaccone G, Scacciavillani R, Carbone S, Camilli M, Niccoli G, et al. Heart failure with preserved ejection fraction diagnosis and treatment: An updated review of the evidence. Prog Cardiovasc Dis. 2020;63:570–84.

    Article  PubMed  Google Scholar 

  17. Li H, Zhang M, Wang Y, Gong K, Yan T, Wang D, et al. Daidzein alleviates doxorubicin-induced heart failure via the SIRT3/FOXO3a signaling pathway. Food Funct. 2022;13:9576–88.

    Article  CAS  PubMed  Google Scholar 

  18. Sharifov OF, Schiros CG, Aban I, Denney TS, Gupta H. Diagnostic accuracy of tissue Doppler index E/e’ for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: a systematic review and Meta-analysis. J Am Heart Assoc. 2016;5:e002530.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feng K, Liu Y, Sun J, Zhao C, Duan Y, Wang W, et al. Compound Danshen Dripping Pill inhibits doxorubicin or isoproterenol-induced cardiotoxicity. Biomed Pharmacother. 2021;138:111531.

    Article  CAS  PubMed  Google Scholar 

  20. Da Dalt L, Castiglioni L, Baragetti A, Audano M, Svecla M, Bonacina F, et al. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction. Eur Heart J. 2021;42:3078–90.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao D, Xue C, Li J, Feng K, Zeng P, Chen Y, et al. Adiponectin agonist ADP355 ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and oxidative stress. Biochem Biophys Res Commun. 2020;533:304–12.

    Article  CAS  PubMed  Google Scholar 

  22. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568:351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao G, Chen W, Yan M, Liu J, Luo H, Wang C, et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med. 2020;45:195–209.

    PubMed  Google Scholar 

  24. Nair N. Epidemiology and pathogenesis of heart failure with preserved ejection fraction. Rev Cardiovasc Med. 2020;21:531–40.

    Article  PubMed  Google Scholar 

  25. Cho GW, Altamirano F, Hill JA. Chronic heart failure: Ca2+, catabolism, and catastrophic cell death. Biochim Biophys Acta. 2016;1862:763–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oppedisano F, Mollace R, Tavernese A, Gliozzi M, Musolino V, Macri R, et al. PUFA supplementation and heart failure: effects on fibrosis and cardiac remodeling. Nutrients. 2021;13:2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lozhkin A, Vendrov AE, Ramos-Mondragon R, Canugovi C, Stevenson MD, Herron TJ, et al. Mitochondrial oxidative stress contributes to diastolic dysfunction through impaired mitochondrial dynamics. Redox Biol. 2022;57:102474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kandasamy AD, Schulz R. Glycogen synthase kinase-3beta is activated by matrix metalloproteinase-2 mediated proteolysis in cardiomyoblasts. Cardiovasc Res. 2009;83:698–706.

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Zou Y, Xing J, Fu YY, Wang KY, Wan PZ, et al. Pretreatment with roxadustat (FG-4592) attenuates folic acid-induced kidney injury through antiferroptosis via Akt/GSK-3beta/Nrf2 pathway. Oxid Med Cell Longev. 2020;2020:6286984.

    PubMed  PubMed Central  Google Scholar 

  30. Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, et al. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol. 2019;10:1511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu B, Deng X, Jiang Q, Li G, Zhang J, Zhang N, et al. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomed Pharmacother. 2020;125:109895.

    Article  CAS  PubMed  Google Scholar 

  32. Zhuge X, Jin X, Ji T, Li R, Xue L, Yu W, et al. Geniposide ameliorates dextran sulfate sodium-induced ulcerative colitis via KEAP1-Nrf2 signaling pathway. J Ethnopharmacol. 2023;314:116626.

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Chen S, Liu S, Biu AM, Han Y, Jin X, et al. A comprehensive review of ethnopharmacology, chemical constituents, pharmacological effects, pharmacokinetics, toxicology, and quality control of gardeniae fructus. J Ethnopharmacol. 2024;320:117397.

    Article  CAS  PubMed  Google Scholar 

  34. Mimica-Dukic N, Bozin B. Mentha L. species (Lamiaceae) as promising sources of bioactive secondary metabolites. Curr Pharm Des. 2008;14:3141–50.

    Article  CAS  PubMed  Google Scholar 

  35. Chen ZZ, Lu Y, Du SY, Shang KX, Cai CB. Influence of borneol and muscone on geniposide transport through MDCK and MDCK-MDR1 cells as blood-brain barrier in vitro model. Int J Pharm. 2013;456:73–9.

    Article  CAS  PubMed  Google Scholar 

  36. Yu B, Ruan M, Cui XB, Guo JM, Xu L, Dong XP. Effects of borneol on the pharmacokinetics of geniposide in cortex, hippocampus, hypothalamus and striatum of conscious rat by simultaneous brain microdialysis coupled with UPLC-MS. J Pharm Biomed Anal. 2013;77:128–32.

    Article  CAS  PubMed  Google Scholar 

  37. Lee CH, Kwak SC, Kim JY, Oh HM, Rho MC, Yoon KH, et al. Genipin inhibits RANKL-induced osteoclast differentiation through proteasome-mediated degradation of c-Fos protein and suppression of NF-kappaB activation. J Pharm Sci. 2014;124:344–53.

    Article  CAS  Google Scholar 

  38. Zhou YX, Zhang RQ, Rahman K, Cao ZX, Zhang H, Peng C. Diverse pharmacological activities and potential medicinal benefits of geniposide. Evid Based Complement Altern Med. 2019;2019:4925682.

    Article  Google Scholar 

  39. Hiebert JB, Shen Q, Thimmesch A, Pierce J. Impaired myocardial bioenergetics in HFpEF and the role of antioxidants. Open Cardiovasc Med J. 2016;10:158–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu W, Zhao Y, Kong Y, Zhang W, Ma W, Li W, et al. Geniposide prevents H2O2-induced oxidative damage in melanocytes by activating the PI3K-Akt signalling pathway. Clin Exp Dermatol. 2018;43:667–74.

    Article  CAS  PubMed  Google Scholar 

  41. Pan H, Li Y, Qian H, Qi X, Wu G, Zhang H, et al. Effects of geniposide from gardenia fruit pomace on skeletal-muscle fibrosis. J Agric Food Chem. 2018;66:5802–11.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang YQ, Chang GL, Wang Y, Zhang DY, Cao L, Liu J. Geniposide prevents hypoxia/reoxygenation-induced apoptosis in H9c2 cells: improvement of mitochondrial dysfunction and activation of GLP-1R and the PI3K/AKT signaling pathway. Cell Physiol Biochem. 2016;39:407–21.

    Article  CAS  PubMed  Google Scholar 

  43. Zuo L, Chuang CC, Hemmelgarn BT, Best TM. Heart failure with preserved ejection fraction: Defining the function of ROS and NO. J Appl Physiol (1985). 2015;119:944–51.

    Article  CAS  PubMed  Google Scholar 

  44. Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation. 2020;43:1589–98.

    Article  CAS  PubMed  Google Scholar 

  45. Sun M, Song L, Li Y, Zhou T, Jope RS. Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ. 2008;15:1887–900.

    Article  CAS  PubMed  Google Scholar 

  46. Zouein FA, de Castro Bras LE, da Costa DV, Lindsey ML, Kurdi M, Booz GW. Heart failure with preserved ejection fraction: emerging drug strategies. J Cardiovasc Pharmacol. 2013;62:13–21.

    Article  CAS  Google Scholar 

  47. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) Grant 82304503 to Shuang Zhang, Anhui Provincial Natural Science Foundation Grant 2308085QH305 to Shuang Zhang, and the Fundamental Research Funds for the Central Universities (Hefei University of Technology) grant JZ2023HGTB0288 to Shuang Zhang.

Author information

Authors and Affiliations

Authors

Contributions

YLH, SZ and YJD designed the study, drafted and edited the manuscript; YLH and TTY performed most of the experiments; HXL, SSC, ZZZ, MJC, YLC, LLW and XXY assisted with experimental protocols or data collection. MYW performed the material preparation and interpretation. All authors discussed the data and contributed to the manuscript.

Corresponding author

Correspondence to Shuang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Yl., Yan, Tt., Li, Hx. et al. Geniposide alleviates heart failure with preserved ejection fraction in mice by regulating cardiac oxidative stress via MMP2/SIRT1/GSK3β pathway. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01341-5

Keywords

Search

Quick links