Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transplant of fecal microbiota from healthy young mice relieves cognitive defects in late-stage diabetic mice by reducing metabolic disorders and neuroinflammation

Abstract

Fecal microbiota transplant (FMT) is becoming as a promising area of interest for treating refractory diseases. In this study, we investigated the effects of FMT on diabetes-associated cognitive defects in mice as well as the underlying mechanisms. Fecal microbiota was prepared from 8-week-aged healthy mice. Late-stage type 1 diabetics (T1D) mice with a 30-week history of streptozotocin-induced diabetics were treated with antibiotics for 7 days, and then were transplanted with bacterial suspension (100 μL, i.g.) once a day for 14 days. We found that FMT from healthy young mice significantly alleviated cognitive defects of late-stage T1D mice assessed in Morris water maze test. We revealed that FMT significantly reduced the relative abundance of Gram-negative bacteria in the gut microbiota and enhanced intestinal barrier integrity, mitigating LPS translocation into the bloodstream and NLRP3 inflammasome activation in the hippocampus, thereby reducing T1D-induced neuronal loss and astrocytic proliferation. FMT also reshaped the metabolic phenotypes in the hippocampus of T1D mice especially for alanine, aspartate and glutamate metabolism. Moreover, we showed that application of aspartate (0.1 mM) significantly inhibited NLRP3 inflammasome activation and IL-1β production in BV2 cells under a HG/LPS condition. We conclude that FMT can effectively relieve T1D-associated cognitive decline via reducing the gut–brain metabolic disorders and neuroinflammation, providing a potential therapeutic approach for diabetes-related brain disorders in clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FMT reshapes the gut microbiota in T1D mice.
Fig. 2: FMT alleviates cognitive impairment in T1D mice.
Fig. 3: FMT enhances colonic barrier integrity in T1D mice.
Fig. 4: FMT suppresses neuroinflammation in hippocampus of T1D mice.
Fig. 5: FMT reduces neuronal loss and astrocytic proliferation in hippocampus of T1D mice.
Fig. 6: FMT remodels the metabolic phenotype in hippocampus of T1D mice.
Fig. 7: FMT restores alanine, aspartate, and glutamate metabolism in hippocampus of T1D mice.
Fig. 8: Aspartate reduces IL-1β production through inhibiting NLRP3 inflammasome activation in BV2 cells.
Fig. 9: Schematic diagram on the protective effect of FMT on cognitive function in T1D mice.

Similar content being viewed by others

Data availability

All data used in this study are present in the main text and supplementary materials. Metabolomics and microbiomics data have been made publicly available in Figshare (https://doi.org/10.6084/m9.figshare.16344801.v1).

References

  1. Biessels GJ, Whitmer RA. Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia. 2020;63:3–9.

    Article  PubMed  Google Scholar 

  2. Petrie D, Lung TW, Rawshani A, Palmer AJ, Svensson AM, Eliasson B, et al. Recent trends in life expectancy for people with type 1 diabetes in Sweden. Diabetologia. 2016;59:1167–76.

    Article  PubMed  Google Scholar 

  3. Smolina K, Wotton CJ, Goldacre MJ. Risk of dementia in patients hospitalised with type 1 and type 2 diabetes in England, 1998–2011: a retrospective national record linkage cohort study. Diabetologia. 2015;58:942–50.

    Article  PubMed  Google Scholar 

  4. Ferguson SC, Blane A, Wardlaw J, Frier BM, Perros P, McCrimmon RJ, et al. Influence of an early-onset age of type 1 diabetes on cerebral structure and cognitive function. Diabetes Care. 2005;28:1431–7.

    Article  PubMed  Google Scholar 

  5. Wessels AM, Rombouts SARB, Remijnse PL, Boom Y, Scheltens P, Barkhof F, et al. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume. Diabetologia. 2007;50:1763–9.

    Article  CAS  PubMed  Google Scholar 

  6. Filip P, Canna A, Moheet A, Bednarik P, Grohn H, Li X, et al. Structural alterations in deep brain structures in type 1 diabetes. Diabetes. 2020;69:2458–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Duinkerken E, Ryan CM, Schoonheim MM, Barkhof F, Klein M, Moll AC, et al. Subgenual cingulate cortex functional connectivity in relation to depressive symptoms and cognitive functioning in type 1 diabetes mellitus patients. Psychosom Med. 2016;78:740–9.

    Article  PubMed  Google Scholar 

  8. Hao L, Li Q, Zhao X, Li Y, Zhang C. A long noncoding RNA LOC103690121 promotes hippocampus neuronal apoptosis in streptozotocin-induced type 1 diabetes. Neurosci Lett. 2019;703:11–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hu P, Thinschmidt JS, Yan Y, Hazra S, Bhatwadekar A, Caballero S, et al. CNS inflammation and bone marrow neuropathy in type 1 diabetes. Am J Pathol. 2013;183:1608–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alvarez EO, Beauquis J, Revsin Y, Banzan AM, Roig P, De Nicola AF, et al. Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes. Behav Brain Res. 2009;198:224–30.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng H, Lin Q, Wang D, Xu P, Zhao L, Hu W, et al. NMR-based metabolomics reveals brain region-specific metabolic alterations in streptozotocin-induced diabetic rats with cognitive dysfunction. Metab Brain Dis. 2017;32:585–93.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang T, Zheng H, Fan K, Xia N, Li J, Yang C, et al. NMR-based metabolomics characterizes metabolic changes in different brain regions of streptozotocin-induced diabetic mice with cognitive decline. Metab Brain Dis. 2020;35:1165–73.

    Article  CAS  PubMed  Google Scholar 

  13. Cowan CS, Dinan TG, Cryan JF. Annual research review: critical windows–the microbiota–gut–brain axis in neurocognitive development. J Child Psychol Psychiatry. 2020;61:353–71.

    Article  PubMed  Google Scholar 

  14. Yu F, Han W, Zhan G, Li S, Xiang S, Zhu B, et al. Abnormal gut microbiota composition contributes to cognitive dysfunction in streptozotocin-induced diabetic mice. Aging. 2019;11:3262–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao H, Jiang Q, Ji H, Ning J, Li C, Zheng H. Type 1 diabetes induces cognitive dysfunction in rats associated with alterations of the gut microbiome and metabolomes in serum and hippocampus. BBA Mol Basis Dis. 2019;1865:165541.

    Article  CAS  Google Scholar 

  16. Long-Smith C, O’Riordan KJ, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota-gut-brain axis: new therapeutic opportunities. Ann Rev Pharmacol Toxicol. 2020;60:477–502.

    Article  CAS  Google Scholar 

  17. Liu Y, Liu W, Li J, Tang S, Wang M, Huang W, et al. A polysaccharide extracted from Astragalus membranaceus residue improves cognitive dysfunction by altering gut microbiota in diabetic mice. Carbohyd Polym. 2019;205:500–12.

    Article  CAS  Google Scholar 

  18. Liu Z, Dai X, Zhang H, Shi R, Hui Y, Jin X, et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun. 2020;11:855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Olesen SW, Panchal P, Chen J, Budree S, Osman M. Global disparities in faecal microbiota transplantation research. Lancet Gastroenterol Hepatol. 2020;5:241.

    Article  PubMed  Google Scholar 

  20. Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol. 2016;13:508–16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. De Groot P, Nikolic T, Pellegrini S, Sordi V, Imangaliyev S, Rampanelli E, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut. 2021;70:92–105.

    Article  PubMed  Google Scholar 

  22. Zheng H, Zheng Y, Zhao L, Chen M, Bai G, Hu Y, et al. Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders. BBA-Mol Basis Dis. 2017;1863:266–73.

    Article  CAS  Google Scholar 

  23. Zheng H, Ni Z, Cai A, Zhang X, Chen J, Shu Q, et al. Balancing metabolome coverage and reproducibility for untargeted NMR-based metabolic profiling in tissue samples through mixture design methods. Anal Bioanal Chem. 2018;410:7783–92.

    Article  CAS  PubMed  Google Scholar 

  24. Savorani F, Tomasi G, Engelsen SB. icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010;202:190–202.

    Article  CAS  PubMed  Google Scholar 

  25. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucl Acids Res. 2018;46:608–17.

    Article  Google Scholar 

  26. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.

    Article  CAS  PubMed  Google Scholar 

  28. Birchenough GM, Johansson ME, Gustafsson JK, Bergström JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015;8:712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaji I, Kaunitz JD. Chemosensing in the colon. In: Said HM, editor. Physiology of the gastrointestinal tract; v 6. Academic Press; 2018. p. 671–82.

  30. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19:241–55.

    Article  CAS  PubMed  Google Scholar 

  31. Ni Y, Yang X, Zheng L, Wang Z, Wu L, Jiang J, et al. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol Nutr Food Res. 2019;63:1900603.

    Article  CAS  Google Scholar 

  32. Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29:787–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi H, Wang Q, Zheng M, Hao S, Lum JS, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflam. 2020;17:77.

    Article  CAS  Google Scholar 

  34. Liu J, Jin Y, Li H, Yu J, Gong T, Gao X, et al. Probiotics exert protective effect against sepsis-induced cognitive impairment by reversing gut microbiota abnormalities. J Agric Food Chem. 2020;68:14874–83.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Tong Q, Ma SR, Zhao ZX, Pan LB, Cong L, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Sig Transduct Target Ther. 2021;6:77.

    Article  Google Scholar 

  36. Kim MS, Kim Y, Choi H, Kim W, Park S, Lee D, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut. 2020;69:283–94.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep. 2019;9:5790.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019;20:2293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA‐glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98:641–53.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt-Wilcke T, Fuchs E, Funke K, Vlachos A, Müller-Dahlhaus F, Puts NAJ, et al. GABA-from inhibition to cognition: emerging concepts. Neuroscientist. 2018;24:501–15.

    Article  CAS  PubMed  Google Scholar 

  41. Prevot T, Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol Psychiatry. 2021;26:151–67.

    Article  CAS  PubMed  Google Scholar 

  42. Cavallero A, Marte A, Fedele E. L-Aspartate as an amino acid neurotransmitter: mechanisms of the depolarization‐induced release from cerebrocortical synaptosomes. J Neurochem. 2009;110:924–34.

    Article  CAS  PubMed  Google Scholar 

  43. Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, et al. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology. 2013;64:13–26.

    Article  CAS  PubMed  Google Scholar 

  44. Tiedje KE, Stevens K, Barnes S, Weaver DF. β-Alanine as a small molecule neurotransmitter. Neurochem Int. 2010;57:177–88.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou L, Zhao J, Han M, Ma A, Yang S, Zeng Y, et al. Aspartate reduces liver inflammation and fibrosis by suppressing the NLRP3 inflammasome pathway via upregulating NS3TP1 expression. J Pers Med. 2023;13:386.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu P, Ning J, Jiang Q, Li C, Yan J, Zhao L, et al. Region-specific metabolic characterization of the type 1 diabetic brain in mice with and without cognitive impairment. Neurochem Int. 2021;143:104941.

    Article  CAS  PubMed  Google Scholar 

  47. Yen CLE, Mar MH, Meeker RB, Fernandes A, Zeisel SH. Choline deficiency induces apoptosis in primary cultures of fetal neurons. FASEB J. 2001;15:1704–10.

    Article  CAS  PubMed  Google Scholar 

  48. Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr. 2006;26:229–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pasantes-Morales H. Taurine homeostasis and volume control. In: Ortega A, Schousboe A, editors. Glial amino acid transporters; v 16. Advances in neurobiology. Cham: Springer; 2017.

  50. Nagayach A, Patro N, Patro I. Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis. 2014;29:747–61.

    Article  CAS  PubMed  Google Scholar 

  51. Isaacks RE, Bender AS, Kim CY, Prieto NM, Norenberg MD. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem Res. 1994;19:331–8.

    Article  CAS  PubMed  Google Scholar 

  52. Fu H, Li B, Hertz L, Peng L. Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int. 2012;61:187–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (22074106) and Zhejiang Provincial Natural Science Foundation of China (LY23H090008). We are grateful for the help from the Scientific Research Center and the Laboratory Animal Center of Wenzhou Medical University.

Author information

Authors and Affiliations

Authors

Contributions

HZ contributed to the experimental design. XXY and QYJ contributed to animal experiment and operation. XXY, QYJ, MJW, and QHY contributed to sample collection and omics analysis. XXY, QYJ, MJW and QHY contributed to RT-PCR and histological analyses. HZ, XXY and QYJ contributed to result discussion and interpretation. HZ, XXY, and QYJ contributed to the data analysis and draft writing. All authors have read, revised, and approved the final manuscript.

Corresponding author

Correspondence to Hong Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Xx., Jiang, Qy., Wu, Mj. et al. Transplant of fecal microbiota from healthy young mice relieves cognitive defects in late-stage diabetic mice by reducing metabolic disorders and neuroinflammation. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01340-6

Keywords

Search

Quick links