Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rab11b promotes M1-like macrophage polarization by restraining autophagic degradation of NLRP3 in alcohol-associated liver disease

Abstract

Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Decreased hepatic Rab11b expression in experimental mice with ALD.
Fig. 2: Up-regulated Rab11b exacerbates macrophages M1-polarization.
Fig. 3: Loss of Rab11b in macrophage promotes M2-polarization in ALD mice.
Fig. 4: Rab11b deficiency ameliorates alcohol induced liver injury.
Fig. 5: NLRP3 inflammasome activation mediates Rab11b-induced M1-macrophage polarization.
Fig. 6: Rab11b inhibits autophagic-mediated degradation of NLRP3.
Fig. 7: Autophagy mediates the protective effect of AAV2/8-Rab11b in alcohol-associated liver disease.

Similar content being viewed by others

References

  1. Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A, Lackner C, et al. Alcoholic liver disease. Nat Rev Dis Prim. 2018;4:16.

    Article  PubMed  Google Scholar 

  2. Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15:349–64.

    Article  CAS  PubMed  Google Scholar 

  3. Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol. 2019;70:249–59.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kazankov K, Jorgensen SMD, Thomsen KL, Moller HJ, Vilstrup H, George J, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16:145–59.

    Article  CAS  PubMed  Google Scholar 

  5. Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol. 2018;30:511–28.

    Article  CAS  PubMed  Google Scholar 

  6. Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7:10321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, et al. Macrophage polarization and its role in liver disease. Front Immunol. 2021;12:803037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.

    Article  CAS  PubMed  Google Scholar 

  9. Torres S, Segales P, Garcia-Ruiz C, Fernandez-Checa JC. Mitochondria and the NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis. Cells. 2022;11:1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17:688.

    Article  PubMed  Google Scholar 

  11. de Carvalho Ribeiro M, Szabo G. Role of the inflammasome in liver disease. Annu Rev Pathol. 2022;17:345–65.

    Article  PubMed  Google Scholar 

  12. Xiao L, Magupalli VG, Wu H. Cryo-EM structures of the active NLRP3 inflammasome disc. Nature. 2023;613:595–600.

    Article  CAS  PubMed  Google Scholar 

  13. Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 2023;41:301–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang WJ, Chen SJ, Zhou SC, Wu SZ, Wang H. Inflammasomes and fibrosis. Front Immunol. 2021;12:643149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20:3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, et al. Autophagy in major human diseases. EMBO J. 2021;40:e108863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 2020;11:591803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao Z, Wang Y, Long Z, He G. Interaction between autophagy and the NLRP3 inflammasome. Acta Biochim Biophys Sin (Shanghai). 2019;51:1087–95.

    Article  CAS  PubMed  Google Scholar 

  19. Calcagno DM, Chu A, Gaul S, Taghdiri N, Toomu A, Leszczynska A, et al. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH. Hepatology. 2022;76:727–41.

    Article  CAS  PubMed  Google Scholar 

  20. Liu T, Wang L, Liang P, Wang X, Liu Y, Cai J, et al. USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy. Cell Mol Immunol. 2021;18:2431–42.

    Article  CAS  PubMed  Google Scholar 

  21. Choudhury A, Bullock D, Lim A, Argemi J, Orning P, Lien E, et al. Inhibition of HSP90 and activation of HSF1 diminish macrophage NLRP3 inflammasome activity in alcohol-associated liver injury. Alcohol Clin Exp Res. 2020;44:1300–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol. 2016;34:12–6.

    PubMed  Google Scholar 

  23. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J. 2011;30:4701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 2021;288:36–55.

    Article  CAS  PubMed  Google Scholar 

  25. Langemeyer L, Frohlich F, Ungermann C. Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol. 2018;28:957–70.

    Article  CAS  PubMed  Google Scholar 

  26. Li G, Marlin MC. Rab family of GTPases. Methods Mol Biol. 2015;1298:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

    Article  CAS  PubMed  Google Scholar 

  28. Wang D, Lou J, Ouyang C, Chen W, Liu Y, Liu X, et al. Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci USA. 2010;107:13806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Su C, Zheng C. When Rab GTPases meet innate immune signaling pathways. Cytokine Growth Factor Rev. 2021;59:95–100.

    Article  CAS  PubMed  Google Scholar 

  30. Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014;21:348–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Szatmari Z, Kis V, Lippai M, Hegedus K, Farago T, Lorincz P, et al. Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization. Mol Biol Cell. 2014;25:522–31.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gao B, Xu MJ, Bertola A, Wang H, Zhou Z, Liangpunsakul S. Animal models of alcoholic liver disease: pathogenesis and clinical relevance. Gene Expr. 2017;17:173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21:248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai B, Zhao J, Zhang Y, Liu Y, Ma C, Yi F, et al. USP5 attenuates NLRP3 inflammasome activation by promoting autophagic degradation of NLRP3. Autophagy. 2022;18:990–1004.

    Article  CAS  PubMed  Google Scholar 

  35. Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012;13:255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu L, Nagai Y, Kajihara Y, Ito G, Tomita T. The regulation of rab GTPases by phosphorylation. Biomolecules. 2021;11:1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gong X, Liu J, Zhang X, Dong F, Liu Y, Wang P. Rab11 functions as an oncoprotein via nuclear factor kappa B (NF-kappaB) signaling pathway in human bladder carcinoma. Med Sci Monit. 2018;24:5093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Daemen S, Chan MM, Schilling JD. Comprehensive analysis of liver macrophage composition by flow cytometry and immunofluorescence in murine NASH. STAR Protoc. 2021;2:100511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han JQ, Zhang X, Lau JKC, Fu KL, Lau HCH, Xu WQ, et al. Bone marrow-derived macrophage contributes to fibrosing steatohepatitis through activating hepatic stellate cells. J Pathol. 2019;248:488–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krenkel O, Hundertmark J, Abdallah AT, Kohlhepp M, Puengel T, Roth T, et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut. 2020;69:551–63.

    Article  CAS  PubMed  Google Scholar 

  41. Merlin S, Bhargava KK, Ranaldo G, Zanolini D, Palestro CJ, Santambrogio L, et al. Kupffer cell transplantation in mice for elucidating monocyte/macrophage biology and for potential in cell or gene therapy. Am J Pathol. 2016;186:539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lv C, Li S, Zhao J, Yang P, Yang C. M1 macrophages enhance survival and invasion of oral squamous cell carcinoma by inducing GDF15-mediated erbB2 posphorylation. ACS Omega. 2022;7:11405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen H, Li X, Sun Y, Du Y, Wu S, Wu Y, et al. HAO1 negatively regulates liver macrophage activation via the NF-kappaB pathway in alcohol-associated liver disease. Cell Signal. 2022;99:110436.

    Article  CAS  PubMed  Google Scholar 

  44. Tsukamoto H, Takeuchi S, Kubota K, Kobayashi Y, Kozakai S, Ukai I, et al. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation. J Biol Chem. 2018;293:10186–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seoane PI, Lee B, Hoyle C, Yu S, Lopez-Castejon G, Lowe M, et al. The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol. 2020;219:e202006194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13:722–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saitoh T, Fujita N, Yoshimori T, Akira S. Autophagy and innate immunity. Tanpakushitsu Kakusan Koso. 2008;53:2279–85.

    CAS  PubMed  Google Scholar 

  48. Saitoh T, Akira S. Regulation of inflammasomes by autophagy. J Allergy Clin Immunol. 2016;138:28–36.

    Article  CAS  PubMed  Google Scholar 

  49. Xian H, Liu Y, Rundberg Nilsson A, Gatchalian R, Crother TR, Tourtellotte WG, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity. 2021;54:1463–77.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ko JH, Yoon SO, Lee HJ, Oh JY. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFkappaB pathways in autophagy- and p62-dependent manners. Oncotarget. 2017;8:40817–31.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Houtman J, Freitag K, Gimber N, Schmoranzer J, Heppner FL, Jendrach M. Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. EMBO J. 2019;38:e99430.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (82370630, 82100627, 82300722), Research Fund of Anhui Institute of Translational Medicine (2021zhyx-B06, 2022zhyx-B07), Natural Science Foundation of Anhui Province (2108085QH311, 2308085QH248), China Postdoctoral Science Foundation (2022M710178), Anhui Fund for Distinguished Young Scholars (2022AH020050), Postgraduate Innovation Research and Practice Program of Anhui Medical University (YJS20230056), Scientific Research Promotion Fund of Anhui Medical University (2022xkjT010), and Scientific Research Platform Improvement Project of Anhui Medical University (2022xkjT045).

Author information

Authors and Affiliations

Authors

Contributions

YXZ and JL designed research; YXZ, LYL, RX, YLY, XYJ, LQZ and XC performed research; YYS and XFL contributed new reagents or analytic tools; XMM, HDL and CH analyzed data; YXZ and HW wrote the paper.

Corresponding authors

Correspondence to Cheng Huang or Jun Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Yx., Sun, Yy., Li, Ly. et al. Rab11b promotes M1-like macrophage polarization by restraining autophagic degradation of NLRP3 in alcohol-associated liver disease. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01333-5

Keywords

Search

Quick links