Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A small molecule compound targeting hemagglutinin inhibits influenza A virus and exhibits broad-spectrum antiviral activity

Abstract

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structure of J1.
Fig. 2: Cytotoxicity and acute oral toxicity of compound J1.
Fig. 3: Broad-spectrum antiviral effects of J1.
Fig. 4: Inhibitory activity of J1 against A/WSN/1933 (H1N1) infection in vitro.
Fig. 5: J1 acts in the early stages of IAV infection and binds to HA.
Fig. 6: J1 inhibits IAV infection by blocking viral membrane fusion.
Fig. 7: Effect of J1 on H1N1 virus-induced ALI in mice.
Fig. 8: Survival protection of J1 on IAV-infected mice.

Similar content being viewed by others

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19:141–54.

    Article  CAS  PubMed  Google Scholar 

  3. Treanor J. Influenza vaccine–outmaneuvering antigenic shift and drift. N Engl J Med. 2004;350:218–20.

    Article  CAS  PubMed  Google Scholar 

  4. Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al. Influenza. Nat Rev Dis Prim. 2018;4:3.

    Article  PubMed  Google Scholar 

  5. Kumar B, Asha K, Khanna M, Ronsard L, Meseko CA, Sanicas M. The emerging influenza virus threat: status and new prospects for its therapy and control. Arch Virol. 2018;163:831–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taubenberger JK, Morens DM. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12:15–22.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schäfer JR, Kawaoka Y, Bean WJ, Süss J, Senne D, Webster RG. Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology. 1993;194:781–8.

    Article  PubMed  Google Scholar 

  8. Hsieh YC, Wu TZ, Liu DP, Shao PL, Chang LY, Lu CY, et al. Influenza pandemics: past, present and future. J Formos Med Assoc. 2006;105:1–6.

    Article  PubMed  Google Scholar 

  9. Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, et al. Antiviral approaches against influenza virus. Clin Microbiol Rev. 2023;36:e0004022.

    Article  PubMed  Google Scholar 

  10. Kumar G, Sakharam KA. Tackling influenza A virus by M2 ion channel blockers: latest progress and limitations. Eur J Med Chem. 2024;267:116172.

    Article  CAS  PubMed  Google Scholar 

  11. Bright RA, Medina MJ, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet. 2005;366:1175–81.

    Article  CAS  PubMed  Google Scholar 

  12. Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res. 2020;220:33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Vries E, Schutten M, Fraaij P, Boucher C, Osterhaus A. Influenza virus resistance to antiviral therapy. Adv Pharmacol. 2013;67:217–46.

    Article  PubMed  Google Scholar 

  14. Hossain MG, Akter S, Dhole P, Saha S, Kazi T, Majbauddin A, et al. Analysis of the genetic diversity associated with the drug resistance and pathogenicity of influenza A virus isolated in Bangladesh from 2002 to 2019. Front Microbiol. 2021;12:735305.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lackenby A, Moran Gilad J, Pebody R, Miah S, Calatayud L, Bolotin S, et al. Continued emergence and changing epidemiology of oseltamivir-resistant influenza A(H1N1)2009 virus, United Kingdom, winter 2010/11. Eur Surveill. 2011;16:19784.

    Article  Google Scholar 

  16. Renaud C, Kuypers J, Englund JA. Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1. J Clin Virol. 2011;52:70–8.

    Article  PubMed  Google Scholar 

  17. Shirley M. Baloxavir Marboxil: a review in acute uncomplicated influenza. Drugs. 2020;80:1109–18.

    Article  CAS  PubMed  Google Scholar 

  18. Hickerson BT, Petrovskaya SN, Dickensheets H, Donnelly RP, Ince WL, Ilyushina NA. Impact of baloxavir resistance-associated substitutions on influenza virus growth and drug susceptibility. J Virol. 2023;97:e0015423.

    Article  PubMed  Google Scholar 

  19. Hayden FG, Sugaya N, Hirotsu N, Lee N, de Jong MD, Hurt AC, et al. Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med. 2018;379:913–23.

    Article  CAS  PubMed  Google Scholar 

  20. Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem. 2010;285:28403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Russell CJ, Hu M, Okda FA. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 2018;26:841–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531–69.

    Article  CAS  PubMed  Google Scholar 

  23. Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A virus cell entry, replication, virion assembly and movement. Front Immunol. 2018;9:1581.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eisfeld AJ, Neumann G, Kawaoka Y. At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol. 2015;13:28–41.

    Article  CAS  PubMed  Google Scholar 

  25. Zeng LY, Yang J, Liu S. Investigational hemagglutinin-targeted influenza virus inhibitors. Expert Opin Investig Drugs. 2017;26:63–73.

    Article  CAS  PubMed  Google Scholar 

  26. Vanderlinden E, Naesens L. Emerging antiviral strategies to interfere with influenza virus entry. Med Res Rev. 2014;34:301–39.

    Article  CAS  PubMed  Google Scholar 

  27. Du L, Zhao G, Zhang X, Liu Z, Yu H, Zheng BJ, et al. Development of a safe and convenient neutralization assay for rapid screening of influenza HA-specific neutralizing monoclonal antibodies. Biochem Biophys Res Commun. 2010;397:580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang K, He J, Li C, Bose ME, Henrickson KJ, Zhou J, et al. Complete genome sequences of one human respiratory syncytial antigenic group a virus from China and its four mouse-adapted isolates. Genome Announc. 2015;3:e00062–15.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Epidemiol. 1938;27:493–7.

    Article  Google Scholar 

  30. Chen Y, Wu Y, Chen S, Zhan Q, Wu D, Yang C, et al. Sertraline is an effective SARS-CoV-2 entry inhibitor targeting the spike protein. J Virol. 2022;96:e0124522.

    Article  PubMed  Google Scholar 

  31. Zhang X, Li A, Li T, Shou Z, Li Y, Qiao X, et al. A potential anti-HIV-1 compound, Q308, inhibits HSV-2 infection and replication in vitro and in vivo. Biomed Pharmacother. 2023;162:114595.

    Article  CAS  PubMed  Google Scholar 

  32. Zwygart AC, Medaglia C, Huber R, Poli R, Marcourt L, Schnee S, et al. Antiviral properties of trans-δ-viniferin derivatives against enveloped viruses. Biomed Pharmacother. 2023;163:114825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu M, Si L, Wang Y, Wu Y, Yu F, Jiao P, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses. J Med Chem. 2014;57:10058–71.

    Article  CAS  PubMed  Google Scholar 

  34. Liu AL, Wang HD, Lee SM, Wang YT, Du GH. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem. 2008;16:7141–7.

    Article  CAS  PubMed  Google Scholar 

  35. Wu W, Li R, Li X, He J, Jiang S, Liu S, et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015;8:1999–4915.

    Article  Google Scholar 

  36. Kumar N, Delu V, Shukla A, Singh RK, Ulasov I, Fayzullina D, et al. Safety assessment of a nucleoside analogue FNC (2’-deoxy-2’-β-fluoro-4’-azidocytidine) in Balb/c mice: acute toxicity study. Asian Pac J Cancer Prev. 2023;24:2157–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang J, Zhang B, Huang Y, Liu T, Zeng B, Chai J, et al. Antiviral activity and mechanism of ESC-1GN from skin secretion of Hylarana guentheri against influenza A virus. J Biochem. 2021;169:757–65.

    Article  CAS  PubMed  Google Scholar 

  38. Pica N, Palese P. Toward a universal influenza virus vaccine: prospects and challenges. Annu Rev Med. 2013;64:189–202.

    Article  CAS  PubMed  Google Scholar 

  39. Tilton JC, Doms RW. Entry inhibitors in the treatment of HIV-1 infection. Antivir Res. 2010;85:91–100.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Z, Cui Q, Caffrey M, Rong L, Du R. Small molecule inhibitors of influenza virus entry. Pharmaceuticals. 2021;14:587.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci USA 2017;114:206–14.

    Article  CAS  PubMed  Google Scholar 

  42. Boriskin YS, Leneva IA, Pécheur EI, Polyak SJ. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem. 2008;15:997–1005.

    Article  CAS  PubMed  Google Scholar 

  43. Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: an update. Antivir Res. 2014;107:84–94.

    Article  CAS  PubMed  Google Scholar 

  44. Antanasijevic A, Cheng H, Wardrop DJ, Rong L, Caffrey M. Inhibition of influenza H7 hemagglutinin-mediated entry. PLoS One. 2013;8:e76363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu S, Li R, Zhang R, Chan CC, Xi B, Zhu Z, et al. CL-385319 inhibits H5N1 avian influenza A virus infection by blocking viral entry. Eur J Pharmacol. 2011;660:460–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shi-bo Jiang at Fudan University for the kindly gift of HA2 antibodies and guidance. This research was funded by the National Natural Science Foundation of China (Grant numbers 82073897, 82373915) and the Science and Technology Innovation Project of Guangdong Medical Products Administration (Grant numbers S2021ZDZ042). We thank BioRender for providing us with the drawing material.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YYL and JY designed the research study. YYL and GDL conceived and carried out experiments. ZXC, KZ, and LRJ carried out animal experiments. JLL and LRJ coordinated the lung tissue collection of mice. YYL and SZY analyzed data. YYL, JY, FJ and SWL wrote and/or reviewed the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jie Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yy., Liang, Gd., Chen, Zx. et al. A small molecule compound targeting hemagglutinin inhibits influenza A virus and exhibits broad-spectrum antiviral activity. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01331-7

Keywords

Search

Quick links