Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Urolithin A promotes atherosclerotic plaque stability by limiting inflammation and hypercholesteremia in Apolipoprotein E–deficient mice

Abstract

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE−/−) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg−1·d−1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 μM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE−/− mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Urolithin A suppressed TNF-α-mediated EC activation and monocyte adhesion capacity.
Fig. 2: Transcriptomic profiling of UroA-treated HUVECs stimulated with TNF-α.
Fig. 3: Urolithin A inhibited endothelial inflammation partially via restraining YAP activation.
Fig. 4: Urolithin A stabilizes atherosclerotic plaques in ApoE−/− mice.
Fig. 5: Plaque cellular composition in the aortic sinus and brachiocephalic artery of Urolithin A treated-ApoE–/– mice.
Fig. 6: Urolithin A modulates the maturation of SREBP1/2 to ameliorate cholesterol metabolism in ApoE−/− mice.

Similar content being viewed by others

Data availability

The RNA-seq data were deposited in China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Science (HRA005830).

References

  1. Collaborators GBDD. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393:1958–72.

    Article  Google Scholar 

  2. Ma SR, Tong Q, Lin Y, Pan LB, Fu J, Peng R, et al. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota. Signal Transduct Target Ther. 2022;7:207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33.

    Article  CAS  PubMed  Google Scholar 

  4. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    PubMed  Google Scholar 

  5. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2:270–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu S, Koroleva M, Yin M, Jin ZG. Atheroprotective laminar flow inhibits Hippo pathway effector YAP in endothelial cells. Transl Res. 2016;176:18–28.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang KC, Yeh YT, Nguyen P, Limqueco E, Lopez J, Thorossian S, et al. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc Natl Acad Sci USA 2016;113:11525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang L, Luo JY, Li B, Tian XY, Chen LJ, Huang Y, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016;540:579–82.

    Article  CAS  PubMed  Google Scholar 

  10. Ma S, Meng Z, Chen R, Guan KL. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.

    Article  CAS  PubMed  Google Scholar 

  11. Li B, He J, Lv H, Liu Y, Lv X, Zhang C, et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J Clin Invest. 2019;129:1167–79.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang HC, Wang TY, Rousseau J, Orlando M, Mungaray M, Michaud C, et al. Biomimetic nanodrug targets inflammation and suppresses YAP/TAZ to ameliorate atherosclerosis. Biomaterials. 2024;306:122505.

    Article  CAS  PubMed  Google Scholar 

  13. D’Amico D, Andreux PA, Valdes P, Singh A, Rinsch C, Auwerx J. Impact of the natural compound urolithin a on health, disease, and aging. Trends Mol Med. 2021;27:687–99.

    Article  PubMed  Google Scholar 

  14. Singh A, D’Amico D, Andreux PA, Fouassier AM, Blanco-Bose W, Evans M, et al. Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep Med. 2022;3:100633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-Dit-Felix AA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med. 2016;22:879–88.

    Article  CAS  PubMed  Google Scholar 

  16. Girotra M, Chiang YH, Charmoy M, Ginefra P, Hope HC, Bataclan C, et al. Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems. Nat Aging. 2023;3:1057–66.

    Article  CAS  PubMed  Google Scholar 

  17. Larrosa M, Gonzalez-Sarrias A, Yanez-Gascon MJ, Selma MV, Azorin-Ortuno M, Toti S, et al. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J Nutr Biochem. 2010;21:717–25.

    Article  CAS  PubMed  Google Scholar 

  18. Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019;10:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tuohetaerbaike B, Zhang Y, Tian Y, Zhang NN, Kang J, Mao X, et al. Pancreas protective effects of Urolithin A on type 2 diabetic mice induced by high fat and streptozotocin via regulating autophagy and AKT/mTOR signaling pathway. J Ethnopharmacol. 2020;250:112479.

    Article  CAS  PubMed  Google Scholar 

  20. Savi M, Bocchi L, Mena P, Dall’Asta M, Crozier A, Brighenti F, et al. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2017;16:80.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Han QA, Su D, Shi C, Liu P, Wang Y, Zhu B, et al. Urolithin A attenuated ox-LDL-induced cholesterol accumulation in macrophages partly through regulating miR-33a and ERK/AMPK/SREBP1 signaling pathways. Food Funct. 2020;11:3432–40.

    Article  CAS  PubMed  Google Scholar 

  22. Han QA, Yan C, Wang L, Li G, Xu Y, Xia X. Urolithin A attenuates ox-LDL-induced endothelial dysfunction partly by modulating microRNA-27 and ERK/PPAR-gamma pathway. Mol Nutr Food Res. 2016;60:1933–43.

    Article  CAS  PubMed  Google Scholar 

  23. Feng X, Zhang L, Xu S, Shen AZ. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review. Prog Lipid Res. 2020;77:101006.

    Article  CAS  PubMed  Google Scholar 

  24. Ginsberg HN, Packard CJ, Chapman MJ, Boren J, Aguilar-Salinas CA, Averna M, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42:4791–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20:589–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73:924–67.

    Article  CAS  PubMed  Google Scholar 

  27. Wu X, Xu M, Liu Z, Zhang Z, Liu Y, Luo S, et al. Pharmacological inhibition of IRAK1 and IRAK4 prevents endothelial inflammation and atherosclerosis in ApoE(-/-) mice. Pharmacol Res. 2022;175:106043.

    Article  CAS  PubMed  Google Scholar 

  28. Xu S, Xu Y, Liu P, Zhang S, Liu H, Slavin S, et al. The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur Heart J. 2019;40:2398–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Traub O, Berk BC. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol. 1998;18:677–85.

    Article  CAS  PubMed  Google Scholar 

  30. Osborn L. Leukocyte adhesion to endothelium in inflammation. Cell. 1990;62:3–6.

    Article  CAS  PubMed  Google Scholar 

  31. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2:725–34.

    Article  CAS  PubMed  Google Scholar 

  32. Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.

    Article  CAS  PubMed  Google Scholar 

  34. Mallavia B, Recio C, Oguiza A, Ortiz-Munoz G, Lazaro I, Lopez-Parra V, et al. Peptide inhibitor of NF-kappaB translocation ameliorates experimental atherosclerosis. Am J Pathol. 2013;182:1910–21.

    Article  CAS  PubMed  Google Scholar 

  35. Pradere JP, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF. Negative regulation of NF-kappaB p65 activity by serine 536 phosphorylation. Sci Signal. 2016;9:ra85.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bir SC, Xiong Y, Kevil CG, Luo J. Emerging role of PKA/eNOS pathway in therapeutic angiogenesis for ischaemic tissue diseases. Cardiovasc Res. 2012;95:7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflug Arch. 2010;459:793–806.

    Article  CAS  Google Scholar 

  38. Ren LY, Shi LM, Zheng YT. Reference materials for improving reliability of multiomics profiling. Phenomics. 2024. https://doi.org/10.1007/s43657-023-00153-7

  39. Marquard S, Thomann S, Weiler SME, Bissinger M, Lutz T, Sticht C, et al. Yes-associated protein (YAP) induces a secretome phenotype and transcriptionally regulates plasminogen activator Inhibitor-1 (PAI-1) expression in hepatocarcinogenesis. Cell Commun Signal. 2020;18:166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gils A, Declerck PJ. Plasminogen activator inhibitor-1. Curr Med Chem. 2004;11:2323–34.

    Article  CAS  PubMed  Google Scholar 

  41. Vaughan DE. PAI-1 and atherothrombosis. J Thromb Haemost. 2005;3:1879–83.

    Article  CAS  PubMed  Google Scholar 

  42. Ilyas I, Little PJ, Liu Z, Xu Y, Kamato D, Berk BC, et al. Mouse models of atherosclerosis in translational research. Trends Pharmacol Sci. 2022;43:920–39.

    Article  CAS  PubMed  Google Scholar 

  43. Xia B, Shi XC, Xie BC, Zhu MQ, Chen Y, Chu XY, et al. Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biol. 2020;18:e3000688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen W, Tumanov S, Stanley CP, Kong SMY, Nadel J, Vigder N, et al. Destabilization of atherosclerotic plaque by bilirubin deficiency. Circ Res. 2023;132:812–27.

    Article  CAS  PubMed  Google Scholar 

  45. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349:2316–25.

    Article  CAS  PubMed  Google Scholar 

  46. Kobiyama K, Ley K. Atherosclerosis. Circ Res. 2018;123:1118–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  CAS  PubMed  Google Scholar 

  48. Saba L, Saam T, Jager HR, Yuan C, Hatsukami TS, Saloner D, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurol. 2019;18:559–72.

    Article  PubMed  Google Scholar 

  49. Tian K, Xu S. Natural products and cardiovascular diseases. Curr Mol Pharmacol. 2021;14:923–24.

    Article  CAS  PubMed  Google Scholar 

  50. Espin JC, Larrosa M, Garcia-Conesa MT, Tomas-Barberan F. Biological significance of urolithins, the gut microbial ellagic Acid-derived metabolites: the evidence so far. Evid Based Complement Altern Med. 2013;2013:270418.

    Article  Google Scholar 

  51. USFDA. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Center for Drug Evaluation and Research, USFDA, US Department of Health and Human Services. http://www.fda.gov/cder/guidance/index, 2005.

  52. Garcia-Villalba R, Gimenez-Bastida JA, Cortes-Martin A, Avila-Galvez MA, Tomas-Barberan FA, Selma MV, et al. Urolithins: a comprehensive update on their metabolism, bioactivity, and associated gut microbiota. Mol Nutr Food Res. 2022;66:e2101019.

    Article  PubMed  Google Scholar 

  53. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S76–99.

    Article  PubMed  Google Scholar 

  54. Kaplan M, Hayek T, Raz A, Coleman R, Dornfeld L, Vaya J, et al. Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. J Nutr. 2001;131:2082–9.

    Article  CAS  PubMed  Google Scholar 

  55. Ridker PM, Bhatt DL, Pradhan AD, Glynn RJ, MacFadyen JG, Nissen SE, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet. 2023;401:1293–301.

    Article  CAS  PubMed  Google Scholar 

  56. Ridker PM. Targeting residual inflammatory risk: The next frontier for atherosclerosis treatment and prevention. Vasc Pharmacol. 2023;153:107238.

    Article  CAS  Google Scholar 

  57. Verma S, Mazer CD, Connelly KA. Inflammation and cholesterol at the crossroads of vascular risk. Cell Metab. 2023;35:1095–98.

    Article  CAS  PubMed  Google Scholar 

  58. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383:1838–47.

    Article  CAS  PubMed  Google Scholar 

  59. Nelson K, Fuster V, Ridker PM. Low-dose colchicine for secondary prevention of coronary artery disease: JACC review topic of the week. J Am Coll Cardiol. 2023;82:648–60.

    Article  CAS  PubMed  Google Scholar 

  60. Vaidyanathan S, Salmi TM, Sathiqu RM, McConville MJ, Cox AG, Brown KK. YAP regulates an SGK1/mTORC1/SREBP-dependent lipogenic program to support proliferation and tissue growth. Dev Cell. 2022;57:719–31. e8

    Article  CAS  PubMed  Google Scholar 

  61. Shu Z, Gao Y, Zhang G, Zhou Y, Cao J, Wan D, et al. A functional interaction between Hippo-YAP signalling and SREBPs mediates hepatic steatosis in diabetic mice. J Cell Mol Med. 2019;23:3616–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doran AC, Yurdagul A Jr, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol. 2020;20:254–67.

    Article  CAS  PubMed  Google Scholar 

  63. Luan P, D’Amico D, Andreux PA, Laurila PP, Wohlwend M, Li H, et al. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci Transl Med. 2021;13:eabb0319.

    Article  CAS  PubMed  Google Scholar 

  64. Andreux PA, Blanco-Bose W, Ryu D, Burdet F, Ibberson M, Aebischer P, et al. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat Metab. 2019;1:595–603.

    Article  CAS  PubMed  Google Scholar 

  65. Liu Y, Zhong W, Li X, Shen F, Ma X, Yang Q, et al. Diets, gut microbiota and metabolites. Phenomics. 2023;3:268–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Key R&D Program of China (Grant No. 2021YFC2500500), the National Natural Science Foundation of China (Grant No. 82370444, 82070464, 82003741) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB38010100). This work was also supported by the Program for Innovative Research Team of The First Affiliated Hospital of USTC (CXGG02), Anhui Provincial Key Research and Development Program (Grant No. 202104j07020051), Anhui Provincial Natural Science Foundation (Grant No. 2208085J08). Suo-wen Xu is a recipient of Humboldt Senior Fellowship from Alexander von Humboldt Foundation, Germany.

Author information

Authors and Affiliations

Authors

Contributions

MYX, JJX and LJK conducted experiments, analyzed data and wrote paper. ZHL, MMS and WQZ are involved in animal experiments. ZHW and LS analyzed data. JBX, XYT, LW, PCE and YH edited and proof read intermediate and the final version of the article. SWX, JPW and XML conceived/supervised projects, designed experiments, and revised article.

Corresponding authors

Correspondence to Xin-miao Liang, Jian-ping Weng or Suo-wen Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, My., Xu, Jj., Kang, Lj. et al. Urolithin A promotes atherosclerotic plaque stability by limiting inflammation and hypercholesteremia in Apolipoprotein E–deficient mice. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01317-5

Keywords

Search

Quick links