Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel FAK-degrading PROTAC molecule exhibited both anti-tumor activities and efficient MDR reversal effects

Abstract

FAK (focal adhesion kinase) is widely involved in cancer growth and drug resistance development. Thus, FAK inhibition has emerged as an effective strategy for tumor treatment both as a monotherapy or in combination with other treatments. But the current FAK inhibitors mainly concentrate on its kinase activity, overlooking the potential significance of FAK scaffold proteins. In this study we employed the PROTAC technology, and designed a novel PROTAC molecule F2 targeting FAK based on the FAK inhibitor IN10018. F2 exhibited potent inhibitory activities against 4T1, MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells with IC50 values of 0.73, 1.09, 5.84 and 3.05 μM, respectively. On the other hand, F2 also remarkably reversed the multidrug resistance (MDR) in HCT8/T, A549/T and MCF-7/ADR cells. Both the effects of F2 were stronger than the FAK inhibitor IN10018. To our knowledge, F2 was the first reported FAK-targeted PROTAC molecule exhibiting reversing effects on chemotherapeutic drug resistance, and its highest reversal fold could reach 158 times. The anti-tumor and MDR-reversing effects of F2 might be based on its inhibition on AKT (protein kinase B, PKB) and ERK (extracellular signal-regulated kinase) signaling pathways, as well as its impact on EMT (epithelial-mesenchymal transition). Furthermore, we found that F2 could reduce the protein level of P-gp in HCT8/T cells, thereby contributing to reverse drug resistance from another perspective. Our results will boost confidence in future research focusing on targeting FAK and encourage further investigation of PROTAC with potent in vivo effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: F2 targets and degrades FAK.
Fig. 2: F2 exerts anti-tumor effects by inhibiting AKT and ERK signaling pathways and affecting EMT.
Fig. 3: F2 reverses the resistance of multidrug-resistant tumor cells to chemotherapy drugs.
Fig. 4: F2 reverses drug resistance by inhibiting AKT and ERK signaling pathways and affecting EMT.
Fig. 5: F2 binds P-gp to reverse drug resistance.

Similar content being viewed by others

References

  1. Chuang HH, Zhen YY, Tsai YC, Chuang CH, Hsiao M, Huang MS, et al. FAK in cancer: from mechanisms to therapeutic strategies. Int J Mol Sci. 2022;23:1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dawson JC, Serrels A, Stupack DG, Schlaepfer DD, Frame MC. Targeting FAK in anticancer combination therapies. Nat Rev Cancer. 2021;21:313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spallarossa A, Tasso B, Russo E, Villa C, Brullo C. The development of FAK inhibitors: a five-year update. Int J Mol Sci. 2022;23:6381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luo M, Zhao X, Chen S, Liu S, Wicha MS, Guan JL. Distinct FAK activities determine progenitor and mammary stem cell characteristics. Cancer Res. 2013;73:5591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cromm PM, Samarasinghe KTG, Hines J, Crews CM. Addressing kinase-independent functions of fak via PROTAC-mediated degradation. J Am Chem Soc. 2018;140:17019–26.

    Article  CAS  PubMed  Google Scholar 

  6. Law RP, Nunes J, Chung CW, Bantscheff M, Buda K, Dai H, et al. Discovery and characterisation of highly cooperative FAK-degrading PROTACs. Angew Chem Int Ed Engl. 2021;60:23327–34.

    Article  CAS  PubMed  Google Scholar 

  7. Popow J, Arnhof H, Bader G, Berger H, Ciulli A, Covini D, et al. Highly Selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. J Med Chem. 2019;62:2508–20.

    Article  CAS  PubMed  Google Scholar 

  8. Gao H, Wu Y, Sun Y, Yang Y, Zhou G, Rao Y. Design, synthesis, and evaluation of highly potent FAK-targeting PROTACs. ACS Med Chem Lett. 2020;11:1855–62.

    Article  CAS  PubMed  Google Scholar 

  9. Diaz Osterman CJ, Ozmadenci D, Kleinschmidt EG, Taylor KN, Barrie AM, Jiang S, et al. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. Elife. 2019;8:e47327.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ji N, Yang Y, Cai CY, Lei ZN, Wang JQ, Gupta P, et al. VS-4718 Antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells by inhibiting the efflux function of ABC transporters. Front Pharmacol. 2018;9:1236.

    Article  CAS  Google Scholar 

  11. Verastem Oncology Announces Positive Data and Regulatory Update from Planned Interim Analysis of Registration-Directed Phase 2 RAMP-201 Trial of Avutometinib and Defactinib in Recurrent Low-Grade Serous Ovarian Cancer [updated 2023 JAN 24; cited 2024 MAY 13]. Available from: https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-announces-positive-data-and-regulatory-update.

  12. InxMed Releases Data Demonstrating Ifebemtinib (IN10018) Trending Toward Survival Benefit at ESMO 2023 [updated 2023 Oct 22; cited 2024 MAY 13]. Available from: https://www.prnewswire.com/news-releases/inxmed-releases-data-demonstrating-ifebemtinib-in10018-trending-toward-survival-benefit-at-esmo-2023-301963834.html.

  13. Hu X, Ouyang Q, yan M, Wenyan C, Cang S, Huang Y, et al. 398P A phase Ib/II study of IN10018/FAKi in combination with pegylated liposomal doxorubicin (PLD) and toripalimab in metastatic triple-negative breast cancer (TNBC): IN10018-010. Ann Oncol. 2023;34:S348–9.

    Article  Google Scholar 

  14. Wu L, Wang J, Wang L, Lu W, Wang K, Lin A, et al. A phase Ib study of IN10018 in combination with pegylated liposomal doxorubicin (PLD) in patients with platinum-resistant ovarian cancer. J Clin Oncol. 2022;40:5567.

    Article  Google Scholar 

  15. Zhao F, Yang Z, Gu X, Feng L, Xu M, Zhang X. miR-92b-3p Regulates cell cycle and apoptosis by targeting CDKN1C, Thereby affecting the sensitivity of colorectal cancer cells to chemotherapeutic drugs. Cancers. 2021;13:3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fang Y, Sun J, Zhong X, Hu R, Gao J, Duan G, et al. ES2 enhances the efficacy of chemotherapeutic agents in ABCB1-overexpressing cancer cells in vitro and in vivo. Pharmacol Res. 2018;129:388–99.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang WL, Li N, Shen Q, Fan M, Guo XD, Zhang XW, et al. Establishment of a mouse model of cancer cachexia with spleen deficiency syndrome and the effects of atractylenolide I. Acta Pharmacol Sin. 2020;41:237–48.

    Article  CAS  PubMed  Google Scholar 

  18. Wang P, Wu J, Wang Q, Zhuang S, Zhao J, Yu Y, et al. Baicalin inhibited both the Furin/TGFβ1/Smad3/TSP-1 pathway in endothelial cells and the AKT/Ca2+/ROS pathway in platelets to ameliorate inflammatory coagulopathy. Eur J Pharmacol. 2023;949:175674.

    Article  CAS  PubMed  Google Scholar 

  19. Dale B, Cheng M, Park KS, Kaniskan H, Xiong Y, Jin J. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer. 2021;21:638–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider M, Radoux CJ, Hercules A, Ochoa D, Dunham I, Zalmas LP, et al. The PROTACtable genome. Nat Rev Drug Discov. 2021;20:789–97.

    Article  CAS  PubMed  Google Scholar 

  21. Pettersson M, Crews CM. PROteolysis TArgeting Chimeras (PROTACs) - past, present and future. Drug Discov Today Technol. 2019;31:15–27.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yuen AR, Sikic BI. Multidrug resistance in lymphomas. J Clin Oncol. 1994;12:2453–9.

    Article  CAS  PubMed  Google Scholar 

  23. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323:1718–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo J, Yao JF, Deng XF, Zheng XD, Jia M, Wang YQ, et al. 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin αvβ3 and activating FAK/PI3K/AKT signaling. J Exp Clin Cancer Res. 2018;37:23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lorusso G, Wyss CB, Kuonen F, Vannini N, Billottet C, Duffey N, et al. Connexins orchestrate progression of breast cancer metastasis to the brain by promoting FAK activation. Sci Transl Med. 2022;14:eaax8933.

    Article  CAS  PubMed  Google Scholar 

  26. Shen M, Jiang YZ, Wei Y, Ell B, Sheng X, Esposito M, et al. Tinagl1 suppresses triple-negative breast cancer progression and metastasis by simultaneously inhibiting integrin/FAK and EGFR signaling. Cancer Cell. 2019;35:64–80.e7.

    Article  CAS  PubMed  Google Scholar 

  27. Rigiracciolo DC, Nohata N, Lappano R, Cirillo F, Talia M, Adame-Garcia SR, et al. Focal Adhesion Kinase (FAK)-Hippo/YAP transduction signaling mediates the stimulatory effects exerted by S100A8/A9-RAGE system in triple-negative breast cancer (TNBC). J Exp Clin Cancer Res. 2022;41:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen J, Cao B, Wang Y, Ma C, Zeng Z, Liu L, et al. Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer. J Exp Clin Cancer Res. 2018;37:175.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Qu J, Qi Y, Duan Y, Huang YW, Zhou Z, et al. EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat Commun. 2022;13:2543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan H, Guan JL. Compensatory function of Pyk2 protein in the promotion of focal adhesion kinase (FAK)-null mammary cancer stem cell tumorigenicity and metastatic activity. J Biol Chem. 2011;286:18573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weis SM, Lim ST, Lutu-Fuga KM, Barnes LA, Chen XL, Göthert JR, et al. Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK. J Cell Biol. 2008;181:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous control mechanisms of FAK and PYK2 and Their relevance to cancer development. Cancers. 2018;10:196.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tiede S, Meyer-Schaller N, Kalathur RKR, Ivanek R, Fagiani E, Schmassmann P, et al. The FAK inhibitor BI 853520 exerts anti-tumor effects in breast cancer. Oncogenesis. 2018;7:73.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tanjoni I, Walsh C, Uryu S, Tomar A, Nam JO, Mielgo A, et al. PND-1186 FAK inhibitor selectively promotes tumor cell apoptosis in three-dimensional environments. Cancer Biol Ther. 2010;9:764–77.

    Article  CAS  PubMed  Google Scholar 

  35. Gao H, Zheng C, Du J, Wu Y, Sun Y, Han C, et al. FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice. Protein Cell. 2020;11:534–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huo X, Zhang W, Zhao G, Chen Z, Dong P, Watari H, et al. FAK PROTAC inhibits ovarian tumor growth and metastasis by disrupting kinase dependent and independent pathways. Front Oncol. 2022;12:851065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin H, He Y, Zhao P, Hu Y, Tao J, Chen J, et al. Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics. 2019;9:265–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang K, Gao N, Bian D, Zhai Q, Yang P, Li M, et al. Correlation between FAK and EGF-Induced EMT in colorectal cancer cells. J Oncol. 2020;2020:5428920.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Golubovskaya V. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci. 2014;19:687.

    Article  CAS  Google Scholar 

  40. Paul R, Luo M, Mo X, Lu J, Yeo SK, Guan JL. FAK activates AKT-mTOR signaling to promote the growth and progression of MMTV-Wnt1-driven basal-like mammary tumors. Breast Cancer Res. 2020;22:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thamilselvan V, Craig DH, Basson MD. FAK association with multiple signal proteins mediates pressure-induced colon cancer cell adhesion via a Src-dependent PI3K/Akt pathway. FASEB J. 2007;21:1730–41.

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen K, Yan Y, Yuan B, Dasgupta A, Sun J, Mu H, et al. ST8SIA1 regulates tumor growth and metastasis in TNBC by activating the FAK-AKT-mTOR signaling pathway. Mol Cancer Ther. 2018;17:2689–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saleem S, Li J, Yee SP, Fellows GF, Goodyer CG, Wang R. beta1 integrin/FAK/ERK signalling pathway is essential for human fetal islet cell differentiation and survival. J Pathol. 2009;219:182–92.

    Article  CAS  PubMed  Google Scholar 

  44. Wu J-I, Lin Y-P, Tseng C-W, Chen H-J, Wang L-H. Crabp2 Promotes Metastasis of Lung Cancer Cells via HuR and Integrin β1/FAK/ERK Signaling. Sci Rep. 2019;9:845.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Provenzano PP, Inman DR, Eliceiri KW, Keely PJ. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK–ERK linkage. Oncogene. 2009;28:4326–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao J, Pestell R, Guan JL. Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Mol Biol Cell. 2001;12:4066–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parsons JT, Martin KH, Slack JK, Taylor JM, Weed SA. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene. 2000;19:5606–13.

    Article  CAS  PubMed  Google Scholar 

  48. Wilson C, Nicholes K, Bustos D, Lin E, Song Q, Stephan JP, et al. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget. 2014;5:7328–41.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cho HJ, Baek KE, Saika S, Jeong MJ, Yoo J. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun. 2007;353:337–43.

    Article  CAS  PubMed  Google Scholar 

  50. Taliaferro-Smith L, Oberlick E, Liu T, McGlothen T, Alcaide T, Tobin R, et al. FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells. Oncotarget. 2015;6:4757–72.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xu CY, Liu SQ, Qin MB, Zhuge CF, Qin L, Qin N, et al. SphK1 modulates cell migration and EMT-related marker expression by regulating the expression of p-FAK in colorectal cancer cells. Int J Mol Med. 2017;39:1277–84.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang H, Jiang H, Zhang H, Liu J, Hu X, Chen L. Ribophorin II potentiates P-glycoprotein- and ABCG2-mediated multidrug resistance via activating ERK pathway in gastric cancer. Int J Biol Macromol. 2019;128:574–82.

    Article  CAS  PubMed  Google Scholar 

  53. Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020;11:797.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ghandadi M, Valadan R, Mohammadi H, Akhtari J, Khodashenas S, Ashari S. Wnt-β-catenin signaling pathway, the Achilles’ heels of cancer multidrug resistance. Curr Pharm Des. 2019;25:4192–207.

    Article  CAS  PubMed  Google Scholar 

  55. Kang Y, Hu W, Ivan C, Dalton HJ, Miyake T, Pecot CV, et al. Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J Natl Cancer Inst. 2013;105:1485–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29:4741–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 82373317, 882374085 and 82303818), the Science and Technology Commission of Shanghai Municipality (20S11902200), the Natural Science Foundation of Shanghai (23ZR1460500), the China Postdoctoral Science Foundation (2023M731106) and Xinjiang Uygur Autonomous Region’s Tianchi Talent–Professor Program.

Author information

Authors and Affiliations

Authors

Contributions

MSX designed the study, performed the experiments, analyzed the data, and drafted the manuscript. XFG, CL, LXP, ZXZ, MF and YZ were involved in partial experiments. JFC participated in the synthesis of the compounds. XWZ and XL supervised the project and revised the manuscript. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Xuan Liu or Xiong-wen Zhang.

Ethics declarations

Competing interests

The team represented by JFC from Nanjing Bestfluorodrug Pharmaceutical Technology company designed and synthesized F2. This study was completed by the XWZ team from East China Normal University and supported by the aforementioned funds. There is no employment relationship between these two teams. The authors declare no conflict of interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Ms., Gu, Xf., Li, C. et al. A novel FAK-degrading PROTAC molecule exhibited both anti-tumor activities and efficient MDR reversal effects. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01312-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01312-w

Keywords

Search

Quick links