Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of a novel BTK inhibitor S-016 and identification of a new strategy for the treatment of lymphomas including BTK inhibitor-resistant lymphomas

Abstract

Bruton’s tyrosine kinase (BTK) has emerged as a therapeutic target for B-cell malignancies, which is substantiated by the efficacy of various irreversible or reversible BTK inhibitors. However, on-target BTK mutations facilitating evasion from BTK inhibition lead to resistance that limits the therapeutic efficacy of BTK inhibitors. In this study we employed structure-based drug design strategies based on established BTK inhibitors and yielded a series of BTK targeting compounds. Among them, compound S-016 bearing a unique tricyclic structure exhibited potent BTK kinase inhibitory activity with an IC50 value of 0.5 nM, comparable to a commercially available BTK inhibitor ibrutinib (IC50 = 0.4 nM). S-016, as a novel irreversible BTK inhibitor, displayed superior kinase selectivity compared to ibrutinib and significant therapeutic effects against B-cell lymphoma both in vitro and in vivo. Furthermore, we generated BTK inhibitor-resistant lymphoma cells harboring BTK C481F or A428D to explore strategies for overcoming resistance. Co-culture of these DLBCL cells with M0 macrophages led to the polarization of M0 macrophages toward the M2 phenotype, a process known to support tumor progression. Intriguingly, we demonstrated that SYHA1813, a compound targeting both VEGFR and CSF1R, effectively reshaped the tumor microenvironment (TME) and significantly overcame the acquired resistance to BTK inhibitors in both BTK-mutated and wild-type BTK DLBCL models by inhibiting angiogenesis and modulating macrophage polarization. Overall, this study not only promotes the development of new BTK inhibitors but also offers innovative treatment strategies for B-cell lymphomas, including those with BTK mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structure, binding mode, and target inhibitory activity and selectivity of S-016.
Fig. 2: S-016 suppressed BTK phosphorylation and exerted in vitro antitumor activity in DLBCL cells.
Fig. 3: In vivo potency of S-016 was confirmed in DLBCL xenograft models.
Fig. 4: Generation of S-016-resistant cell LY10-016R and ibrutinib-resistant cell TMD8-ibruR1.
Fig. 5: In vivo antitumor activity of SYHA1813 on xenograft tumors including LY10-016R (BTK C481F), OCI-LY10 (BTK WT), and TMD8-ibruR (BTK A428D).
Fig. 6: In vitro validation of the impact of SYHA1813 on macrophage polarization and angiogenesis.

Similar content being viewed by others

References

  1. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390:298–310.

    Article  PubMed  Google Scholar 

  2. Sehn LH, Salles G. Diffuse large B-cell lymphoma. N Engl J Med. 2021;384:842–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuo HP, Ezell SA, Hsieh S, Schweighofer KJ, Cheung LW, Wu S, et al. The role of PIM1 in the ibrutinib-resistant ABC subtype of diffuse large B-cell lymphoma. Am J Cancer Res. 2016;6:2489–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Urata T, Naoi Y, Jiang A, Boyle M, Sunami K, Imai T, et al. Distribution and clinical impact of molecular subtypes with dark zone signature of DLBCL in a Japanese real-world study. Blood Adv. 2023;7:7459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    Article  CAS  PubMed  Google Scholar 

  6. Choi WW, Weisenburger DD, Greiner TC, Piris MA, Banham AH, Delabie J, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15:5494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Susanibar-Adaniya S, Barta SK. 2021 Update on diffuse large B cell Lymphoma: A review of current data and potential applications on risk stratification and management. Am J Hematol. 2021;96:617–29.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wilson WH, Young RM, Schmitz R, Yang Y, Pittaluga S, Wright G, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21:922–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2002;2:945–56.

    Article  CAS  PubMed  Google Scholar 

  10. Kenny EF, Quinn SR, Doyle SL, Vink PM, van Eenennaam H, O’Neill LA. Bruton’s tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLoS One. 2013;8:e74103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119:2590–4.

    Article  PubMed  Google Scholar 

  12. Molina-Cerrillo J, Alonso-Gordoa T, Gajate P, Grande E. Bruton’s tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treat Rev. 2017;58:41–50.

    Article  CAS  PubMed  Google Scholar 

  13. Li W, Sano R, Apatira M, DeAnda F, Gururaja T, Yang M, et al. Bruton’s tyrosine kinase inhibitors with distinct binding modes reveal differential functional impact on B-cell receptor signaling. Mol Cancer Ther. 2024;23:35–46.

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Chen C, Wang D, Zhang J, Zhang T. Emerging small-molecule inhibitors of the Bruton’s tyrosine kinase (BTK): Current development. Eur J Med Chem. 2021;217:113329.

    Article  CAS  PubMed  Google Scholar 

  15. Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer. 2018;18:148–67.

    Article  CAS  PubMed  Google Scholar 

  16. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paulus A, Akhtar S, Yousaf H, Manna A, Paulus SM, Bashir Y, et al. Waldenstrom macroglobulinemia cells devoid of BTK(C481S) or CXCR4(WHIM-like) mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J. 2017;7:e565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu XJ, Xu L, Pang XJ, Ying Yuan X, Yu GX, Li YR, et al. Progress in the development of small molecular inhibitors of the Bruton’s tyrosine kinase (BTK) as a promising cancer therapy. Bioorg Med Chem. 2021;47:116358.

    Article  CAS  PubMed  Google Scholar 

  20. Timofeeva N, Gandhi V. Ibrutinib combinations in CLL therapy: scientific rationale and clinical results. Blood Cancer J. 2021;11:79.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shah B, Zhao X, Silva AS, Shain KH, Tao J. Resistance to ibrutinib in B cell malignancies: one size does not fit all. Trends Cancer. 2018;4:197–206.

    Article  CAS  PubMed  Google Scholar 

  22. Woyach JA, Ruppert AS, Guinn D, Lehman A, Blachly JS, Lozanski A, et al. BTK(C481S)-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol. 2017;35:1437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen JG, Liu X, Munshi M, Xu L, Tsakmaklis N, Demos MG, et al. BTK(Cys481Ser) drives ibrutinib resistance via ERK1/2 and protects BTK(wild-type) MYD88-mutated cells by a paracrine mechanism. Blood. 2018;131:2047–59.

    Article  CAS  PubMed  Google Scholar 

  24. Sun SL, Wu SH, Kang JB, Ma YY, Chen L, Cao P, et al. Medicinal chemistry strategies for the development of Bruton’s tyrosine kinase inhibitors against resistance. J Med Chem. 2022;65:7415–37.

    Article  CAS  PubMed  Google Scholar 

  25. Wang E, Mi X, Thompson MC, Montoya S, Notti RQ, Afaghani J, et al. Mechanisms of resistance to noncovalent Bruton’s tyrosine kinase inhibitors. N Engl J Med. 2022;386:735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41:374–403.

    Article  PubMed  Google Scholar 

  27. Casey SC, Amedei A, Aquilano K, Azmi AS, Benencia F, Bhakta D, et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol. 2015;35:S199–s223.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Zhou X, Wang X. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol. 2021;14:125.

    Article  PubMed  PubMed Central  Google Scholar 

  29. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74.

    Article  PubMed  Google Scholar 

  30. Fujiwara T, Yakoub MA, Chandler A, Christ AB, Yang G, Ouerfelli O, et al. CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol Cancer Ther. 2021;20:1388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Osipov A, Saung MT, Zheng L, Murphy AG. Small molecule immunomodulation: the tumor microenvironment and overcoming immune escape. J Immunother Cancer. 2019;7:224.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wada N, Zaki MA, Hori Y, Hashimoto K, Tsukaguchi M, Tatsumi Y, et al. Tumour-associated macrophages in diffuse large B-cell lymphoma: a study of the Osaka Lymphoma Study Group. Histopathology. 2012;60:313–9.

    Article  PubMed  Google Scholar 

  33. Papin A, Tessoulin B, Bellanger C, Moreau A, Le Bris Y, Maisonneuve H, et al. CSF1R and BTK inhibitions as novel strategies to disrupt the dialog between mantle cell lymphoma and macrophages. Leukemia. 2019;33:2442–53.

    Article  CAS  PubMed  Google Scholar 

  34. Chen SS, Barrientos JC, Ferrer G, King-Richards M, Chen YJ, Ravichandran P, et al. Duvelisib eliminates CLL B cells, impairs CLL-supporting cells, and overcomes ibrutinib resistance in a xenograft model. Clin Cancer Res. 2023;29:1984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li X, Liu R, Su X, Pan Y, Han X, Shao C, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer. 2019;18:177.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhao Y, Guo S, Deng J, Shen J, Du F, Wu X, et al. VEGF/VEGFR-targeted therapy and immunotherapy in non-small cell lung cancer: targeting the tumor microenvironment. Int J Biol Sci. 2022;18:3845–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Zhan Z, Kang Z, Li M, Lv Y, Li S, et al. Preclinical and early clinical studies of a novel compound SYHA1813 that efficiently crosses the blood-brain barrier and exhibits potent activity against glioblastoma. Acta Pharm Sin B. 2023;13:4748–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xue Y, Song P, Song Z, Wang A, Tong L, Geng M, et al. Discovery of 4,7-diamino-5-(4-phenoxyphenyl)-6-methylene-pyrimido[5,4-b]pyrrolizines as novel Bruton’s tyrosine kinase inhibitors. J Med Chem. 2018;61:4608–27.

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Sun Y, Zhang X, Cai H, Zhang C, Qu H, et al. Oxidative stress activates NORAD expression by H3K27ac and promotes oxaliplatin resistance in gastric cancer by enhancing autophagy flux via targeting the miR-433-3p. Cell Death Dis. 2021;12:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23:37–45.

    Article  CAS  PubMed  Google Scholar 

  41. He MY, Kridel R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia. 2021;35:2151–65.

    Article  PubMed  Google Scholar 

  42. Winter AM, Landsburg DJ, Mato AR, Isaac K, Hernandez-Ilizaliturri FJ, Reddy N, et al. A multi-institutional outcomes analysis of patients with relapsed or refractory DLBCL treated with ibrutinib. Blood. 2017;130:1676–79.

    Article  CAS  PubMed  Google Scholar 

  43. Younes A, Sehn LH, Johnson P, Zinzani PL, Hong X, Zhu J, et al. Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma. J Clin Oncol. 2019;37:1285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sibaud V, Beylot-Barry M, Protin C, Vigarios E, Recher C, Ysebaert L. Dermatological toxicities of Bruton’s tyrosine kinase inhibitors. Am J Clin Dermatol. 2020;21:799–812.

    Article  PubMed  Google Scholar 

  45. Gu D, Tang H, Wu J, Li J, Miao Y. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies. J Hematol Oncol. 2021;14:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by High-level Innovative Research Institute, Department of Science and Technology of Guangdong Province (2021B0909050003), Zhongshan Municipal Bureau of Science and Technology (2023B2029), the National Natural Science Foundation of China (82273948), the Project of Shanghai Institute of Materia Medica, CAS (SIMM0120231001), State Key Laboratory of Drug Research (SKLDR-2023-TT-01), and Institutes for Drug Discovery and Development, CAS (CASIMM0120225003-1 and -2).

Author information

Authors and Affiliations

Authors

Contributions

HX, AZ, JD, WHD, PRS, ZPW and GGH designed this study, wrote and/or revised the manuscript; PRS, ZPW, GGH, LJT, TZ, YF, HTT, FF and YL performed the in vitro experiments and analyzed data; AZ, WHD, ZLS, ZSZ, and YX designed and synthesized the compounds; YC, PRS, ZPW, GGH, YQH and WHS performed in vivo study.

Corresponding authors

Correspondence to Wen-hu Duan, Jian Ding, Ao Zhang or Hua Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Pr., Wan, Zp., Huang, Gg. et al. Discovery of a novel BTK inhibitor S-016 and identification of a new strategy for the treatment of lymphomas including BTK inhibitor-resistant lymphomas. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01311-x

Keywords

Search

Quick links