Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ripretinib inhibits HIV-1 transcription through modulation of PI3K-AKT-mTOR

Abstract

Despite the effectiveness of antiretroviral therapy (ART) in prolonging the lifespan of individuals infected with HIV-1, it does not offer a cure for acquired immunodeficiency syndrome (AIDS). The “block and lock” approach aims to maintain the provirus in a state of extended transcriptional arrest. By employing the “block and lock” strategy, researchers endeavor to impede disease progression by preventing viral rebound for an extended duration following patient stops receiving ART. The crux of this strategy lies in the utilization of latency-promoting agents (LPAs) that are suitable for impeding HIV-1 provirus transcription. However, previously documented LPAs exhibited limited efficacy in primary cells or samples obtained from patients, underscoring the significance of identifying novel LPAs that yield substantial outcomes. In this study, we performed high-throughput screening of FDA-approved compound library in the J-Lat A2 cell line to discover more efficacious LPAs. We discovered ripretinib being an LPA candidate, which was validated and observed to hinder proviral activation in cell models harboring latent infections, as well as CD4+ T cells derived from infected patients. We demonstrated that ripretinib effectively impeded proviral activation through inhibition of the PI3K-AKT-mTOR signaling pathway in the HIV-1 latent cells, thereby suppressing the opening states of cellular chromatin. The results of this research offer a promising drug candidate for the implementation of the “block and lock” strategy in the pursuit of an HIV-1 cure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Screening of an FDA-approved compound library identified ripretinib as an LPA candidate.
Fig. 2: Ripretinib broadly inhibits HIV-1 reactivation in vitro and ex vivo.
Fig. 3: Ripretinib does not cause apparent cytotoxicity, cell activation, or cell dysfunction.
Fig. 4: Multiple drugs targeting C-kit or PDGFRα inhibit the reactivation of HIV-1 provirus.
Fig. 5: Ripretinib inhibits HIV-1 provirus activation by inhibiting the PI3K-AKT and MAPK signaling pathways.
Fig. 6: Ripretinib inhibits HIV-1 proviral reactivation by suppressing cellular chromatin opening.

Similar content being viewed by others

References

  1. Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, et al. Long-term control of HIV by CCR5Δ32/Δ32 stem-cell transplantation. N Engl J Med. 2009;360:692–8.

    Article  PubMed  Google Scholar 

  2. Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature. 2019;568:244–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, et al. Research priorities for an HIV cure: international AIDS society global scientific strategy 2021. Nat Med. 2021;27:2085–98.

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, et al. The reservoir of latent HIV. Front Cell Infect Microbiol. 2022;12:945–6.

    Google Scholar 

  5. Simonetti FR, Sobolewski MD, Fyne E, Shao W, Spindler J, Hattori J, et al. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci USA. 2016;113:1883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saag MS, Kilby JM. HIV-1 and HAART: a time to cure, a time to kill. Nat Med. 1999;5:609–11.

    Article  CAS  PubMed  Google Scholar 

  7. Li M, Budai MM, Chen M, Wang J. Targeting HIV-1 reservoirs in T cell subsets. Front Immunol. 2023;14:1087923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perkins MJ, Bradley WP, Lalani T, Agan BK, Whitman TJ, Ferguson TM, et al. Brief report: prevalence of posttreatment controller phenotype is rare in HIV-infected persons after stopping antiretroviral therapy. J Acquir Immune Defic Syndr. 2017;75:364–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee GQ, Orlova-Fink N, Einkauf K, Chowdhury FZ, Sun X, Harrington S, et al. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells. J Clin Invest. 2017;127:2689–96.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dai W, Wu F, McMyn N, Song B, Walker-Sperling VE, Varriale J, et al. Genome-wide CRISPR screens identify combinations of candidate latency reversing agents for targeting the latent HIV-1 reservoir. Sci Transl Med. 2022;14:h3351.

    Article  Google Scholar 

  11. Kim Y, Anderson JL, Lewin SR. Getting the “kill” into “shock and kill”: strategies to eliminate latent HIV. Cell Host Microbe. 2018;23:14–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Margolis DM, Garcia JV, Hazuda DJ, Haynes BF. Latency reversal and viral clearance to cure HIV-1. Science. 2016;353:aaf6517.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abner E, Jordan A. HIV “shock and kill” therapy: In need of revision. Antivir Res. 2019;166:19–34.

    Article  CAS  PubMed  Google Scholar 

  14. Victoriano AF, Okamoto T. Transcriptional control of HIV replication by multiple modulators and their implication for a novel antiviral therapy. AIDS Res Hum Retroviruses. 2012;28:125–38.

    Article  CAS  PubMed  Google Scholar 

  15. Lian X, Seiger KW, Parsons EM, Gao C, Sun W, Gladkov GT, et al. Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy. Cell Host Microbe. 2023;31:83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-and-lock strategies to cure HIV infection. Viruses. 2020;12:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li C, Mori L, Valente ST. The block-and-lock strategy for human immunodeficiency virus cure: lessons learned from didehydro–cortistatin A. J Infect Dis. 2021;223:46–53.

    Article  PubMed  Google Scholar 

  18. Mousseau G, Mediouni S, Valente ST. Targeting HIV transcription: the quest for a functional cure. Curr Top Microbiol Immunol. 2015;389:121–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mediouni S, Chinthalapudi K, Ekka MK, Usui I, Jablonski JA, Clementz MA, et al. Didehydro-cortistatin A inhibits HIV-1 by specifically binding to the unstructured basic region of Tat. mBio. 2019;10:10–1128.

    Article  Google Scholar 

  20. Ling L, Leda AR, Begum N, Spagnuolo RA, Wahl A, Garcia JV, et al. Loss of in vivo replication fitness of HIV-1 variants resistant to the Tat inhibitor, dCA. Viruses. 2023;15:950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davidson A, Leeper TC, Athanassiou Z, Patora-Komisarska K, Karn J, Robinson JA, et al. Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein. Proc Natl Acad Sci USA. 2009;106:11931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karn J. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV AIDS. 2011;6:4–11.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mediouni S, Jablonski J, Paris JJ, Clementz MA, Thenin-Houssier S, McLaughlin JP, et al. Didehydro-cortistatin A inhibits HIV-1 Tat-mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice. Curr HIV Res. 2015;13:64–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 2003;22:1868–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai J, Gao H, Zhao J, Hu S, Liang X, Yang Y, et al. Infection with a newly designed dual fluorescent reporter HIV-1 effectively identifies latently infected CD4+ T cells. Elife. 2021;10:e63810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith BD, Kaufman MD, Lu WP, Gupta A, Leary CB, Wise SC, et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell. 2019;35:738–51.

    Article  CAS  PubMed  Google Scholar 

  27. Zalcberg JR. Ripretinib for the treatment of advanced gastrointestinal stromal tumor. Ther Adv Gastroenterol. 2021;14:1088191153.

    Article  Google Scholar 

  28. Villanueva MT. Ripretinib turns off the switch in GIST. Nat Rev Drug Discov. 2019;18:499.

    Article  CAS  PubMed  Google Scholar 

  29. Wan Z, Chen X. Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology. 2014;11:1–13.

    Article  Google Scholar 

  30. Huang T, Cai J, Wang P, Zhou J, Zhang H, Wu Z, et al. Ponatinib represses latent HIV-1 by inhibiting AKT-mTOR. Antimicrob Agents Chemother. 2023;67:e00067–23.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang HC, Xing S, Shan L, O’Connell K, Dinoso J, Shen A, et al. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest. 2009;119:3473–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Anderson I, Low JS, Weston S, Weinberger M, Zhyvoloup A, Labokha AA, et al. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc Natl Acad Sci USA. 2014;111:1528–37.

    Article  Google Scholar 

  33. Pande V, Ramos M. Nuclear factor kappa B: a potential target for anti-HIV chemotherapy. Curr Med Chem. 2003;10:1603–15.

    Article  CAS  PubMed  Google Scholar 

  34. Budhiraja S, Rice AP. Reactivation of latent HIV: do all roads go through P-TEFb? Future Virol. 2013;8:649–59.

    Article  CAS  Google Scholar 

  35. Gupta AK, Li B, Cerniglia GJ, Ahmed MS, Hahn SM, Maity A, et al. The HIV protease inhibitor nelfinavir downregulates Akt phosphorylation by inhibiting proteasomal activity and inducing the unfolded protein response. Neoplasia. 2007;9:271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chugh P, Bradel-Tretheway B, Monteiro-Filho CM, Planelles V, Maggirwar SB, Dewhurst S, et al. Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy. Retrovirology. 2008;5:1–13.

    Article  Google Scholar 

  37. Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res. 2002;62:5230–5.

    CAS  PubMed  Google Scholar 

  38. Pasquereau S, Herbein G. CounterAKTing HIV: toward a “block and clear” strategy? Front Cell Infect Microbiol. 2022;12:827717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin PH, Ke YY, Su CT, Shiao H-Y, Hsieh H-P, Chao Y-K, et al. Inhibition of HIV-1 Tat-mediated transcription by a coumarin derivative, BPRHIV001, through the Akt pathway. J Virol. 2011;85:9114–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boehm D, Ott M. Host methyltransferases and demethylases: potential new epigenetic targets for HIV cure strategies and beyond. AIDS Res Hum Retroviruses. 2017;33:8–22.

    Article  Google Scholar 

  41. Mariño-Ramírez L, Kann MG, Shoemaker BA, Landsman D. Histone structure and nucleosome stability. Expert Rev Proteomic. 2005;2:719–29.

    Article  Google Scholar 

  42. Jiang C, Lian X, Gao C, Sun X, Einkauf KB, Chevalier JM, et al. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature. 2020;585:261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bedwell GJ, Engelman AN. Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Res. 2021;49:621–35.

    Article  CAS  PubMed  Google Scholar 

  44. Chen HC, Martinez JP, Zorita E, Meyerhans A, Filion GJ. Position effects influence HIV latency reversal. Nat Struct Mol Biol. 2017;24:47–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants who donated blood samples for this study. This work was supported by National Key R&D Program of China (2021YFC2301903), National Natural Science Foundation of China (32070159, 82302514 to JFC), Science and Technology Projects of Guangdong Province of China (2021B1212030012), the Advanced Medical Technology Center Program of The First Affiliated Hospital of Sun Yat-sen University to KD, and the Nurturing Program of Key Laboratory of Tropical Disease Control of Ministry of Education (SYSU) to JJC.

Author information

Authors and Affiliations

Authors

Contributions

KD, JSZ, JFC, and JJC conceived and supervised the project. PPW provided the clinical samples. JSZ, PPW, JFC and ZYM performed the experiments. JFC, ZQW and JCZ analyzed the data. JFC, HXP and XYL edited figures and tables. JSZ, PPW and JFC wrote the manuscript. KD revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jun-jian Chen, Pei-pei Wang or Kai Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Jf., Zhou, Js., Meng, Zy. et al. Ripretinib inhibits HIV-1 transcription through modulation of PI3K-AKT-mTOR. Acta Pharmacol Sin 45, 1632–1643 (2024). https://doi.org/10.1038/s41401-024-01282-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-024-01282-z

Keywords

Search

Quick links