Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule caspase-1 inhibitor CZL80 terminates refractory status epilepticus via inhibition of glutamatergic transmission

Abstract

Status epilepticus (SE), a serious and often life-threatening medical emergency, is characterized by abnormally prolonged seizures. It is not effectively managed by present first-line anti-seizure medications and could readily develop into drug resistance without timely treatment. In this study, we highlight the therapeutic potential of CZL80, a small molecule that inhibits caspase-1, in SE termination and its related mechanisms. We found that delayed treatment of diazepam (0.5 h) easily induces resistance in kainic acid (KA)-induced SE. CZL80 dose-dependently terminated diazepam-resistant SE, extending the therapeutic time window to 3 h following SE, and also protected against neuronal damage. Interestingly, the effect of CZL80 on SE termination was model-dependent, as evidenced by ineffectiveness in the pilocarpine-induced SE. Further, we found that CZL80 did not terminate KA-induced SE in Caspase-1−/− mice but partially terminated SE in IL1R1−/− mice, suggesting the SE termination effect of CZL80 was dependent on the caspase-1, but not entirely through the downstream IL-1β pathway. Furthermore, in vivo calcium fiber photometry revealed that CZL80 completely reversed the neuroinflammation-augmented glutamatergic transmission in SE. Together, our results demonstrate that caspase-1 inhibitor CZL80 terminates diazepam-resistant SE by blocking glutamatergic transmission. This may be of great therapeutic significance for the clinical treatment of refractory SE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CZL80 effectively terminates diazepam-resistant SE.
Fig. 2: CZL80 effectively terminates diazepam-resistant SE with the extended therapeutic window.
Fig. 3: CZL80 relieves the neuron loss after SE.
Fig. 4: CZL80 does not terminate SE in Casp1−/− mice.
Fig. 5: CZL80 partially terminates SE in IL1R1−/− mice.
Fig. 6: CZL80 inhibits the enhanced glutamatergic transmission during SE.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Trinka E, Cock H, Hesdorffer D, Rossetti AO, Scheffer IE, Shinnar S, et al. A definition and classification of status epilepticus—Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015;56:1515–23.

    Article  PubMed  Google Scholar 

  2. Johnson EL, Kaplan PW. Status epilepticus: definition, classification, pathophysiology, and epidemiology. Semin Neurol. 2020;40:647–51.

    Article  PubMed  Google Scholar 

  3. Ascoli M, Ferlazzo E, Gasparini S, Mastroianni G, Citraro R, Roberti R, et al. Epidemiology and outcomes of status epilepticus. Int J Gen Med. 2021;14:2965–73.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zimmern V, Korff C. Status epilepticus in children. J Clin Neurophysiol. 2020;37:429–33.

    Article  PubMed  Google Scholar 

  5. Dhaliwal JS, Rosani A, Saadabadi A Diazepam. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.

  6. Burman RJ, Selfe JS, Lee JH, van den Berg M, Calin A, Codadu NK, et al. Excitatory GABAergic signalling is associated with benzodiazepine resistance in status epilepticus. Brain. 2019;142:3482–501.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brigo F, Del Giovane C, Nardone R, Trinka E, Lattanzi S. Intravenous antiepileptic drugs in adults with benzodiazepine-resistant convulsive status epilepticus: A systematic review and network meta-analysis. Epilepsy Behav. 2019;101:106466.

    Article  PubMed  Google Scholar 

  8. Tang Y, Feng B, Wang Y, Sun H, You Y, Yu J, et al. Structure-based discovery of CZL80, a caspase-1 inhibitor with therapeutic potential for febrile seizures and later enhanced epileptogenic susceptibility. Br J Pharmacol. 2020;177:3519–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao J, Zheng Y, Liu K, Chen J, Lai N, Fei F, et al. HMGB1 is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window. Neurotherapeutics. 2020;17:710–21.

    Article  CAS  PubMed  Google Scholar 

  10. Ruan Y, Xu C, Lan J, Nao J, Zhang S, Fan F, et al. Low-frequency stimulation at the subiculum is anti-convulsant and anti-drug-resistant in a mouse model of lamotrigine-resistant temporal lobe epilepsy. Neurosci Bull. 2020;36:654–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu C, Zhang S, Gong Y, Nao J, Shen Y, Tan B, et al. Subicular caspase-1 contributes to pharmacoresistance in temporal lobe epilepsy. Ann Neurol. 2021;90:377–90.

    Article  CAS  PubMed  Google Scholar 

  12. Tan CC, Zhang JG, Tan MS, Chen H, Meng DW, Jiang T, et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation. 2015;12:18.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qin Z, Song J, Lin A, Yang W, Zhang W, Zhong F, et al. GPR120 modulates epileptic seizure and neuroinflammation mediated by NLRP3 inflammasome. J Neuroinflammation. 2022;19:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohseni-Moghaddam P, Roghani M, Khaleghzadeh-Ahangar H, Sadr SS, Sala C. A literature overview on epilepsy and inflammasome activation. Brain Res Bull. 2021;172:229–35.

    Article  CAS  PubMed  Google Scholar 

  15. Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem. 1999;274:20049–52.

    Article  CAS  PubMed  Google Scholar 

  16. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6:128.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xia S, Yang P, Li F, Yu Q, Kuang W, Zhu Y, et al. Chaihu-Longgu-Muli Decoction exerts an antiepileptic effect in rats by improving pyroptosis in hippocampal neurons. J Ethnopharmacol. 2021;270:113794.

    Article  CAS  PubMed  Google Scholar 

  18. Xia L, Liu L, Cai Y, Zhang Y, Tong F, Wang Q, et al. Inhibition of gasdermin D-mediated pyroptosis attenuates the severity of seizures and astroglial damage in kainic acid-induced epileptic mice. Front Pharmacol. 2021;12:751644.

    Article  CAS  PubMed  Google Scholar 

  19. Xu ZH, Wang Y, Tao AF, Yu J, Wang XY, Zu YY, et al. Interleukin-1 receptor is a target for adjunctive control of diazepam-refractory status epilepticus in mice. Neuroscience. 2016;328:22–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cristina de Brito Toscano E, Leandro Marciano Vieira É, Boni Rocha Dias B, Vidigal Caliari M, Paula Gonçalves A, Varela Giannetti A, et al. NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res. 2021;1752:147230.

    Article  CAS  PubMed  Google Scholar 

  21. Ravizza T, Noé F, Zardoni D, Vaghi V, Sifringer M, Vezzani A. Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1beta production. Neurobiol Dis. 2008;31:327–33.

    Article  CAS  PubMed  Google Scholar 

  22. Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, et al. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics. 2011;8:304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang B, Zou J, Rensing NR, Yang M, Wong M. Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex. Neurobiol Dis. 2015;80:70–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003;23:8692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balosso S, Maroso M, Sanchez-Alavez M, Ravizza T, Frasca A, Bartfai T, et al. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain. 2008;131:3256–65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zipp F, Bittner S, Schafer DP. Cytokines as emerging regulators of central nervous system synapses. Immunity. 2023;56:914–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Callus BA, Vaux DL. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ. 2007;14:73–8.

    Article  CAS  PubMed  Google Scholar 

  28. Vezzani A, Balosso S, Maroso M, Zardoni D, Noé F, Ravizza T. ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Curr Opin Investig Drugs. 2010;11:43–50.

    CAS  PubMed  Google Scholar 

  29. Pan L, Tang WD, Wang K, Fang QF, Liu MR, Wu ZX, et al. Novel caspase-1 inhibitor CZL80 improves neurological function in mice after progressive ischemic stroke within a long therapeutic time-window. Acta Pharmacol Sin. 2022;43:2817–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu D, Tang Y, Li W, You Y, Shi J, Xu C, et al. Thermo-sensitive micelles extend therapeutic potential for febrile seizures. Signal Transduct Target Ther. 2021;6:296.

    Article  PubMed  PubMed Central  Google Scholar 

  31. George Paxinos KBJF. The mouse brain in stereotaxic coordinates. New York: Academic Press; 2007.

  32. Wang Y, Qiu XY, Liu JY, Tan B, Wang F, Sun MJ, et al. (+)-Borneol enantiomer ameliorates epileptic seizure via decreasing the excitability of glutamatergic transmission. Acta Pharmacol Sin. 2023;44:1600–11.

    Article  CAS  PubMed  Google Scholar 

  33. Treiman DM, Meyers PD, Walton NY, Collins JF, Colling C, Rowan AJ, et al. A comparison of four treatments for generalized convulsive status epilepticus. Veterans Affairs Status Epilepticus Cooperative Study Group. N Engl J Med. 1998;339:792–8.

    Article  CAS  PubMed  Google Scholar 

  34. Treiman DM, Walton NY, Kendrick C. A progressive sequence of electroencephalographic changes during generalized convulsive status epilepticus. Epilepsy Res. 1990;5:49–60.

    Article  CAS  PubMed  Google Scholar 

  35. Xu C, Wang S, Wang Y, Lin K, Pan G, Xu Z, et al. A decrease of ripples precedes seizure onset in mesial temporal lobe epilepsy. Exp Neurol. 2016;284:29–37.

    Article  PubMed  Google Scholar 

  36. Müller CJ, Gröticke I, Bankstahl M, Löscher W. Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Exp Neurol. 2009;219:284–97.

    Article  PubMed  Google Scholar 

  37. Chen JW, Wasterlain CG. Status epilepticus: pathophysiology and management in adults. Lancet Neurol. 2006;5:246–56.

    Article  PubMed  Google Scholar 

  38. Bragin A, Azizyan A, Almajano J, Wilson CL, Engel J Jr. Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats. Epilepsia. 2005;46:1592–8.

    Article  PubMed  Google Scholar 

  39. Toyoda I, Fujita S, Thamattoor AK, Buckmaster PS. Unit activity of hippocampal interneurons before spontaneous seizures in an animal model of temporal lobe epilepsy. J Neurosci. 2015;35:6600–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse. 1989;3:154–71.

    Article  CAS  PubMed  Google Scholar 

  41. Jones DM, Esmaeil N, Maren S, Macdonald RL. Characterization of pharmacoresistance to benzodiazepines in the rat Li-pilocarpine model of status epilepticus. Epilepsy Res. 2002;50:301–12.

    Article  CAS  PubMed  Google Scholar 

  42. Reddy DS, Zaayman M, Kuruba R, Wu X. Comparative profile of refractory status epilepticus models following exposure of cholinergic agents pilocarpine, DFP, and soman. Neuropharmacology. 2021;191:108571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao F, Chen R, Li S, Li A, Bai B, Mi R, et al. (+)-Borneol exerts neuroprotective effects via suppressing the NF-κB pathway in the pilocarpine-induced epileptogenesis rat model. Brain Res. 2023;1810:148382.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, An L, Guo S, Huang X, Tian H, Liu L, et al. LMR-101, a novel derivative of propofol, exhibits potent anticonvulsant effects and possibly interacts with a novel target on γ-aminobutyric acid type A receptors. Epilepsia. 2021;62:238–49.

    Article  CAS  PubMed  Google Scholar 

  45. Chen LL, Feng HF, Mao XX, Ye Q, Zeng LH. One hour of pilocarpine-induced status epilepticus is sufficient to develop chronic epilepsy in mice, and is associated with mossy fiber sprouting but not neuronal death. Neurosci Bull. 2013;29:295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berg M, Bruhn T, Frandsen A, Schousboe A, Diemer NH. Kainic acid-induced seizures and brain damage in the rat: role of calcium homeostasis. J Neurosci Res. 1995;40:641–6.

    Article  CAS  PubMed  Google Scholar 

  47. Menini C, Meldrum BS, Riche D, Silva-Comte C, Stutzmann JM. Sustained limbic seizures induced by intraamygdaloid kainic acid in the baboon: Symptomatology and neuropathological consequences. Ann Neurol. 1980;8:501–9.

    Article  CAS  PubMed  Google Scholar 

  48. Wang F, Zhang Q, Wang Y, Chen J, Wang Y. Insight into drug resistance in status epilepticus: evidence from animal models. Int J Mol Sci. 2023;24:2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Du K, He M, Zhao D, Wang Y, Ma C, Liang H, et al. Mechanism of cell death pathways in status epilepticus and related therapeutic agents. Biomed Pharmacother. 2022;149:112875.

    Article  CAS  PubMed  Google Scholar 

  50. Li M, Sun X, Wang Z, Li Y. Caspase-1 affects chronic restraint stress-induced depression-like behaviors by modifying GABAergic dysfunction in the hippocampus. Transl Psychiatry. 2023;13:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitchell WG. Status epilepticus and acute repetitive seizures in children, adolescents, and young adults: etiology, outcome, and treatment. Epilepsia. 1996;37:S74–80.

    Article  PubMed  Google Scholar 

  52. Brigo F, Bragazzi NL, Bacigaluppi S, Nardone R, Trinka E. Is intravenous lorazepam really more effective and safe than intravenous diazepam as first-line treatment for convulsive status epilepticus? A systematic review with meta-analysis of randomized controlled trials. Epilepsy Behav. 2016;64:29–36.

    Article  PubMed  Google Scholar 

  53. Macdonald RL. Antiepileptic drug actions. Epilepsia. 1989;30:S19–28.

    Article  PubMed  Google Scholar 

  54. Prior PF, Maclaine GN, Scott DF, Lawrance BM. Intravenous diazepam. Lancet. 1971;2:434–5.

    Article  CAS  PubMed  Google Scholar 

  55. Scollo-Lavizzari G. Valium and epilepsy. Lancet. 1970;1:422.

    Article  CAS  PubMed  Google Scholar 

  56. Browne TR, Penry JK. Benzodiazepines in the treatment of epilepsy. A review. Epilepsia. 1973;14:277–310.

    Article  CAS  PubMed  Google Scholar 

  57. Prasad M, Krishnan PR, Sequeira R, Al-Roomi K. Anticonvulsant therapy for status epilepticus. Cochrane Database Syst Rev. 2014;2014:Cd003723.

    PubMed  PubMed Central  Google Scholar 

  58. Wang S, He H, Long J, Sui X, Yang J, Lin G, et al. TRPV4 regulates soman-induced status epilepticus and secondary brain injury via NMDA receptor and NLRP3 inflammasome. Neurosci Bull. 2021;37:905–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ryu HJ, Kim JE, Kim MJ, Kwon HJ, Suh SW, Song HK, et al. The protective effects of interleukin-18 and interferon-γ on neuronal damages in the rat hippocampus following status epilepticus. Neuroscience. 2010;170:711–21.

    Article  CAS  PubMed  Google Scholar 

  60. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019;50:778–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature. 2016;535:425–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73:1–60.

    Article  CAS  PubMed  Google Scholar 

  63. Naylor DE, Liu H, Wasterlain CG. Trafficking of GABAA receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 2005;25:7724–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J. Subunit-specific trafficking of GABAA receptors during status epilepticus. J Neurosci. 2008;28:2527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Szczurowska E, Mareš P. NMDA and AMPA receptors: development and status epilepticus. Physiol Res. 2013;62:S21–38.

    Article  CAS  PubMed  Google Scholar 

  66. Joshi S, Kapur J. Mechanisms of status epilepticus: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor hypothesis. Epilepsia. 2018;59:78–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang M, Chen Y. Inflammation: a network in the pathogenesis of status epilepticus. Front Mol Neurosci. 2018;11:341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Vliet EA, Aronica E, Vezzani A, Ravizza T. Review: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathol Appl Neurobiol. 2018;44:91–111.

    Article  PubMed  Google Scholar 

  69. Lin TW, Harward SC, Huang YZ, McNamara JO. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology. 2020;167:107734.

    Article  CAS  PubMed  Google Scholar 

  70. Xie Y, Yu N, Chen Y, Zhang K, Ma HY, Di Q. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway. Mol Med Rep. 2017;16:1691–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H. Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol. 2008;73:1444–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Natural Science Foundation of China (82330116 and 82022071), and the Natural Science Foundation of Zhejiang Province (LD22H310003).

Author information

Authors and Affiliations

Authors

Contributions

The main idea of this study was from ZC and Yi W. FW, Yu W, QYZ, KYH, and YJS conducted the experiments. FW, Yu W, and Yi W conducted the data analysis. LY, FF, CLX, SLC, and YPR provided technical guidance and contributed to the data discussion. FW, Yu W, and Yi W wrote the manuscript. Yi W and ZC supervised all aspects of the work.

Corresponding authors

Correspondence to Yi Wang or Zhong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, Y., Zhang, Qy. et al. Small-molecule caspase-1 inhibitor CZL80 terminates refractory status epilepticus via inhibition of glutamatergic transmission. Acta Pharmacol Sin 45, 1381–1392 (2024). https://doi.org/10.1038/s41401-024-01257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-024-01257-0

Keywords

Search

Quick links