Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

(+)-Borneol enantiomer ameliorates epileptic seizure via decreasing the excitability of glutamatergic transmission

Abstract

Epilepsy is one common brain disorder, which is not well controlled by current pharmacotherapy. In this study we characterized the therapeutic potential of borneol, a plant-derived bicyclic monoterpene compound, in the treatment of epilepsy and elucidated the underlying mechanisms. The anti-seizure potency and properties of borneol were assessed in both acute and chronic mouse epilepsy models. Administration of (+)-borneol (10, 30, 100 mg/kg, i.p.) dose-dependently attenuated acute epileptic seizure in maximal-electroshock seizure (MES) and pentylenetetrazol (PTZ)-induced seizure models without obvious side-effect on motor function. Meanwhile, (+)-borneol administration retarded kindling-induced epileptogenesis and relieved fully kindled seizures. Importantly, (+)-borneol administration also showed therapeutic potential in kainic acid-induced chronic spontaneous seizure model, which was considered as a drug-resistant model. We compared the anti-seizure efficacy of 3 borneol enantiomers in the acute seizure models, and found (+)-borneol being the most satisfying one with long-term anti-seizure effect. In electrophysiological study conducted in mouse brain slices containing the subiculum region, we revealed that borneol enantiomers displayed different anti-seizure mechanisms, (+)-borneol (10 μM) markedly suppressed the high frequency burst firing of subicular neurons and decreased glutamatergic synaptic transmission. In vivo calcium fiber photometry analysis further verified that administration of (+)-borneol (100 mg/kg) inhibited the enhanced glutamatergic synaptic transmission in epilepsy mice. We conclude that (+)-borneol displays broad-spectrum anti-seizure potential in different experimental models via decreasing the glutamatergic synaptic transmission without obvious side-effect, suggesting (+)-borneol as a promising anti-seizure compound for pharmacotherapy in epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: (+)-Borneol dose-dependently attenuates acute epileptic seizure in MES- and PTZ-induced models.
Fig. 2: (+)-Borneol attenuates epileptic seizures in the hippocampal-kindling model.
Fig. 3: (+)-Borneol enantiomers show broad-spectrum and optimal anti-seizure effects.
Fig. 4: (+)-Borneol attenuates spontaneous seizures in the KA-induced chronic epilepsy model.
Fig. 5: (+)-Borneol decreases the excitability of glutamatergic transmission.
Fig. 6: (+)-Borneol decreases the enhanced glutamatergic transmission in epileptic mice.

Similar content being viewed by others

References

  1. Wang Y, Chen Z. An update for epilepsy research and antiepileptic drug development: toward precise circuit therapy. Pharmacol Ther. 2019;201:77–93.

    Article  CAS  PubMed  Google Scholar 

  2. Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet. 2019;393:689–701.

    Article  PubMed  Google Scholar 

  3. Pierre-Louis SJ, Brannegan RT, Evans AT. Seizure control and side-effect profile after switching adult epileptic patients from standard to extended-release divalproex sodium. Clin Neurol Neurosurg. 2009;111:437–41.

    Article  PubMed  Google Scholar 

  4. Smith MC, Centorrino F, Welge JA, Collins MA. Clinical comparison of extended-release divalproex versus delayed-release divalproex: pooled data analyses from nine trials. Epilepsy Behav. 2004;5:746–51.

    Article  PubMed  Google Scholar 

  5. Fan Q, Liu Y, Rao J, Zhang Z, Xiao W, Zhu T, et al. Anti-atherosclerosis effect of angong niuhuang pill via regulating Th17/Treg immune balance and inhibiting chronic inflammatory on ApoE(-/-) mice model of early and mid-term atherosclerosis. Front Pharmacol. 2019;10:1584.

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Fan X, Chen Y, Liang X, Shen W, Zhang Y. Efficacy and safety of Xingnaojing injection for emergency treatment of acute ischemic stroke: a systematic review and meta-analysis. Front Pharmacol. 2022;13:839305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang QL, Fu BM, Zhang ZJ. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv. 2017;24:1037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng Q, Chen ZX, Xu MB, Zhou XL, Huang YY, Zheng GQ, et al. Borneol, a messenger agent, improves central nervous system drug delivery through enhancing blood-brain barrier permeability: a preclinical systematic review and meta-analysis. Drug Deliv. 2018;25:1617–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Granger RE, Campbell EL, Johnston GA. (+)- And (-)-borneol: efficacious positive modulators of GABA action at human recombinant alpha1beta2gamma2L GABA(A) receptors. Biochem Pharmacol. 2005;69:1101–11.

    Article  CAS  PubMed  Google Scholar 

  10. Lai H, Liu C, Hou L, Lin W, Chen T, Hong A. TRPM8-regulated calcium mobilization plays a critical role in synergistic chemosensitization of borneol on doxorubicin. Theranostics. 2020;10:10154–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, et al. Monoterpenoid agonists of TRPV3. Br J Pharmacol. 2007;151:530–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J, Zhang L, Xu C, Shen YY, Lin YH, Zhang Y, et al. A pain killer without analgesic tolerance designed by co-targeting PSD-95-nNOS interaction and alpha2-containning GABAARs. Theranostics. 2021;11:5970–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang L, Yin CY, Wu HY, Tian BB, Zhu Y, Luo CX, et al. (+)-Borneol is neuroprotective against permanent cerebral ischemia in rats by suppressing production of proinflammatory cytokines. J Biomed Res. 2017;31:306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao B, Ni HY, Li J, Zhou Y, Bian XL, Tao Y, et al. (+)-Borneol suppresses conditioned fear recall and anxiety-like behaviors in mice. Biochem Biophys Res Commun. 2018;495:1588–93.

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Zhang D, Hu J, Jia Q, Xu W, Su D, et al. A clinical and mechanistic study of topical borneol-induced analgesia. EMBO Mol Med. 2017;9:802–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tambe R, Jain P, Patil S, Ghumatkar P, Sathaye S. Antiepileptogenic effects of borneol in pentylenetetrazole-induced kindling in mice. Naunyn Schmiedebergs Arch Pharmacol. 2016;389:467–75.

    Article  CAS  PubMed  Google Scholar 

  17. Quintans-Júnior LJ, Guimarães AG, Araújo BES, Oliveira GF, Santana MT, Moreira FV, et al. Carvacrol, (-)-borneol and citral reduce convulsant activity in rodents. Afr J Biotechnol. 2010;9:6566–72.

    Google Scholar 

  18. Tang Y, Feng B, Wang Y, Sun H, You Y, Yu J, et al. Structure-based discovery of CZL80, a caspase-1 inhibitor with therapeutic potential for febrile seizures and later enhanced epileptogenic susceptibility. Br J Pharmacol. 2020;177:3519–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Ying X, Chen L, Liu Y, Wang Y, Liang J, et al. Electroresponsive nanoparticles improve antiseizure effect of phenytoin in generalized tonic-clonic seizures. Neurotherapeutics. 2016;13:603–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Wang Y, Xu C, Wang S, Tan N, Chen C, et al. Direct septum-hippocampus cholinergic circuit attenuates seizure through driving somatostatin inhibition. Biol Psychiatry. 2020;87:843–56.

    Article  CAS  PubMed  Google Scholar 

  21. Racine R, Okujava V, Chipashvili S. Modification of seizure activity by electrical stimulation. 3. Mechanisms. Electroencephalogr Clin Neurophysiol. 1972;32:295–9.

    Article  CAS  PubMed  Google Scholar 

  22. Chen B, Xu C, Wang Y, Lin W, Wang Y, Chen L, et al. A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nat Commun. 2020;11:923.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fei F, Wang X, Xu C, Shi J, Gong Y, Cheng H, et al. Discrete subicular circuits control generalization of hippocampal seizures. Nat Commun. 2022;13:5010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park TJ, Park YS, Lee TG, Ha H, Kim KT. Inhibition of acetylcholine-mediated effects by borneol. Biochem Pharmacol. 2003;65:83–90.

    Article  CAS  PubMed  Google Scholar 

  25. Qi Y, Cheng H, Lou Q, Wang X, Lai N, Gao C, et al. Paradoxical effects of posterior intralaminar thalamic calretinin neurons on hippocampal seizure via distinct downstream circuits. iScience. 2022;25:104218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng L, Xu C, Wang L, An D, Jiang L, Zheng Y, et al. Histamine H1 receptor deletion in cholinergic neurons induces sensorimotor gating ability deficit and social impairments in mice. Nat Commun. 2021;12:1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castel-Branco MM, Alves GL, Figueiredo IV, Falcao AC, Caramona MM. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find Exp Clin Pharmacol. 2009;31:101–6.

    Article  CAS  PubMed  Google Scholar 

  28. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci. 2012;Chapter 9:Unit9 37.

    PubMed  Google Scholar 

  29. Klein S, Bankstahl M, Loscher W. Inter-individual variation in the effect of antiepileptic drugs in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology. 2015;90:53–62.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Xu C, Xu Z, Ji C, Liang J, Wang Y, et al. Depolarized GABAergic signaling in subicular microcircuits mediates generalized seizure in temporal lobe epilepsy. Neuron. 2017;95:92–105.e105.

    Article  CAS  PubMed  Google Scholar 

  31. Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G, Xiao X, et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat Neurosci. 2018;21:1272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. da Fonseca DV, da Silva Maia Bezerra Filho C, Lima TC, de Almeida RN, de Sousa DP. Anticonvulsant essential oils and their relationship with oxidative stress in epilepsy. Biomolecules. 2019;9:835.

  33. White HS, Johnson M, Wolf HH, Kupferberg HJ. The early identification of anticonvulsant activity: role of the maximal electroshock and subcutaneous pentylenetetrazol seizure models. Ital J Neuro Sci. 1995;16:73–7.

    Article  CAS  Google Scholar 

  34. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73:1–60.

    Article  CAS  PubMed  Google Scholar 

  35. Moriyama H, Nomura S, Imoto H, Inoue T, Fujiyama Y, Haji K, et al. Suppressive effects of transient receptor potential melastatin 8 agonist on epileptiform discharges and epileptic seizures. Front Pharmacol. 2021;12:766782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wrigley PJ, Jeong HJ, Vaughan CW. Primary afferents with TRPM8 and TRPA1 profiles target distinct subpopulations of rat superficial dorsal horn neurones. Br J Pharmacol. 2009;157:371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Das A, Wallace GCT, Holmes C, McDowell ML, Smith JA, Marshall JD, et al. Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience. 2012;220:237–46.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao J, Sun J, Zheng Y, Zheng Y, Shao Y, Li Y, et al. Activated astrocytes attenuate neocortical seizures in rodent models through driving Na+-K+-ATPase. Nat Commun. 2022;13:7136.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Key R&D Program of China (2021ZD0202803 and 2020YFA0803902), the National Natural Science Foundation of China (82022071), the Natural Science Foundation of Zhejiang Province (LD22H310003) and the Research Project of Zhejiang Chinese Medical University (2022JKJNTZ13).

Author information

Authors and Affiliations

Authors

Contributions

ZC, YiW, and YuW designed the research. YuW, XYQ, JYL, FW, and MJS conducted the experiments. YuW, XYQ, and YiW conducted the data analysis. BT, XHJ, XMJ, and CLX provided technical guidance and contributed to the data discussion. YuW and YiW wrote the paper. YiW and ZC supervised all aspects of the work.

Corresponding authors

Correspondence to Yi Wang or Zhong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qiu, Xy., Liu, Jy. et al. (+)-Borneol enantiomer ameliorates epileptic seizure via decreasing the excitability of glutamatergic transmission. Acta Pharmacol Sin 44, 1600–1611 (2023). https://doi.org/10.1038/s41401-023-01075-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01075-w

Keywords

This article is cited by

Search

Quick links