Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

AXL antibody and AXL-ADC mediate antitumor efficacy via targeting AXL in tumor-intrinsic epithelial-mesenchymal transition and tumor-associated M2-like macrophage

Abstract

The receptor tyrosine kinase AXL is an emerging driver of cancer recurrence, while its molecular mechanism remains unclear. In this study we investigated how AXL regulated the disease progression and poor prognosis in non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We performed AXL transcriptome analysis from TCGA datasets, and found that AXL expression was significantly elevated in NSCLC and TNBC correlating with poor prognosis, epithelial-mesenchymal transition (EMT) and immune-tolerant tumor microenvironment (TME). Knockdown of AXL or treatment with two independent AXL antibodies (named anti-AXL and AXL02) all diminished cell migration and EMT in AXL-high expressing NSCLC and TNBC cell lines. In a mouse model of 4T1 TNBC, administration of anti-AXL antibody substantially inhibited lung metastases formation and growth, accompanied by reduced downstream signaling activation, EMT and proliferation index, as well as an increased apoptosis and activated anti-tumor immunity. We found that AXL was abundantly activated in tumor nodule-infiltrated M2-macrophages. A specific anti-AXL antibody blocked bone marrow-derived macrophage (BMDM) M2-polarization in vitro. Targeting of AXL in M2-macrophage in addition to tumor cell substantially suppressed CSF-1 production and eliminated M2-macrophage in TME, leading to a coordinated enhancement in both the innate and adaptive immunity reflecting M1-like macrophages, mature dendritic cells, cytotoxic T cells and B cells. We generated a novel and humanized AXL-ADC (AXL02-MMAE) employing a site-specific conjugation platform. AXL02-MMAE exerted potent cytotoxicity against a panel of AXL-high expressing tumor cell lines (IC50 < 0.1 nmol/L) and suppressed in vivo growth of multiple NSCLC and glioma tumors (a minimum efficacy dose<1 mg/kg). Compared to chemotherapy, AXL02-MMAE achieved a superior efficacy in regressing large sized tumors, eliminated AXL-H tumor cell-dependent M2-macrophage infiltration with a robust accumulation of inflammatory macrophages and mature dendritic cells. Our results support AXL-targeted therapy for treatment of advanced NSCLC and TNBC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AXL is elevated in NSCLC and TNBC and correlates with poor survival, EMT and immunosuppressive tumor environment.
Fig. 2: Characterization of AXL-high tumor models and response to anti-AXL treatment in vitro.
Fig. 3: AXL inhibition reduces lung metastasis and induces antitumor immunity in a syngeneic mouse model of TNBC.
Fig. 4: AXL-targeted inhibition of M2 macrophage polarization and function in tumor environment.
Fig. 5: AXL inhibition impairs the M2 polarization of macrophages in vitro.
Fig. 6: Discovery of highly potent and humanized anti-AXL antibody and AXL-ADC.
Fig. 7: Potent in vivo antitumor efficacy of novel AXL-ADC in athymic mice.
Fig. 8: AXL-ADC induces a dramatic tumor regression and suppression of tumor associated M2-like macrophages in athymic mice.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  2. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    Article  CAS  Google Scholar 

  3. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.

    Article  CAS  Google Scholar 

  4. Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers (Basel). 2020;12:916.

    Article  CAS  Google Scholar 

  5. Narayan P, Wahby S, Gao JJ, Amiri-Kordestani L, Ibrahim A, Bloomquist E, et al. FDA approval summary: atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin Cancer Res. 2020;26:2284–9.

    Article  CAS  Google Scholar 

  6. Sequist LV, Han JY, Ahn MJ, Cho BC, Yu H, Kim SW, et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020;21:373–86.

    Article  CAS  Google Scholar 

  7. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.

    Article  Google Scholar 

  8. Badve SS, Penault-Llorca F, Reis-Filho JS, Deurloo R, Siziopikou KP, D’Arrigo C, et al. Determining PD-L1 status in patients with triple-negative breast cancer: lessons learned from IMpassion130. J Natl Cancer Inst. 2022;114:664–75.

    Article  Google Scholar 

  9. Auyez A, Sayan AE, Kriajevska M, Tulchinsky E. AXL receptor in cancer metastasis and drug resistance: when normal functions go askew. Cancers (Basel). 2021;13:4864.

    Article  CAS  Google Scholar 

  10. Wu GL, Ma ZQ, Hu W, Wang DJ, Gong B, Fan CX, et al. Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis. 2017;8:e2700.

    Article  Google Scholar 

  11. Dagamajalu S, Rex DA, Palollathil A, Shetty R, Bhat G, Cheung LWT, et al. A pathway map of AXL receptor-mediated signaling network. J Cell Commun Signal. 2021;15:143–8.

    Article  CAS  Google Scholar 

  12. Ishikawa M, Sonobe M, Nakayama E, Kobayashi M, Kikuchi R, Kitamura J, et al. Higher expression of receptor tyrosine kinase Axl, and differential expression of its ligand, Gas6, predict poor survival in lung adenocarcinoma patients. Ann Surg Oncol. 2013;20:467–76.

    Article  Google Scholar 

  13. Gjerdrum C, Tiron C, Hoiby T, Stefansson I, Haugen H, Sandal T, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci USA. 2010;107:1124–9.

    Article  CAS  Google Scholar 

  14. Taniguchi H, Yamada T, Wang R, Tanimura K, Adachi Y, Nishiyama A, et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat Commun. 2019;10:1–14.

    Article  CAS  Google Scholar 

  15. Tanaka K, Tokunaga E, Inoue Y, Yamashita N, Saeki H, Okano S, et al. Impact of expression of vimentin and Axl in breast cancer. Clin Breast Cancer. 2016;16:520–6.

    Article  CAS  Google Scholar 

  16. Song XZ, Wang H, Logsdon CD, Rashid A, Fleming JB, Abbruzzese JL, et al. Overexpression of receptor tyrosine kinase Axl promotes tumor cell invasion and survival in pancreatic ductal adenocarcinoma. Cancer. 2011;117:734–43.

    Article  CAS  Google Scholar 

  17. Hugo W, Zaretsky JM, Sun L, Song CY, Moreno BH, Hu-Lieskovan SW, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44.

    Article  CAS  Google Scholar 

  18. Huang J, Li H, Ren G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). Int J Oncol. 2015;47:840–8.

    Article  CAS  Google Scholar 

  19. Lou YY, Diao LX, Cuentas ER, Denning WL, Chen LM, Fan YH, et al. Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin Cancer Res. 2016;22:3630–42.

    Article  CAS  Google Scholar 

  20. Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi J-P, Nevo J, Gjerdrum C, et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011;30:1436–48.

    Article  CAS  Google Scholar 

  21. Antony J, Tan TZ, Kelly Z, Low J, Choolani M, Recchi C, et al. The GAS6-AXL signaling network is a mesenchymal (Mes) molecular subtype-specific therapeutic target for ovarian cancer. Sci Signal. 2016;9:ra97.

    Article  Google Scholar 

  22. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44:852–60.

    Article  CAS  Google Scholar 

  23. Davra V, Kumar S, Geng K, Calianese D, Mehta D, Gadiyar V, et al. Axl and Mertk receptors cooperate to promote breast cancer progression by combined oncogenic signaling and evasion of host anti-tumor immunity. Cancer Res. 2021;81:698–712.

    Article  CAS  Google Scholar 

  24. Neubauer A, Fiebeler A, Graham DK, O’Bryan JP, Schmidt CA, Barckow P, et al. Expression of Axl, a transforming receptor tyrosine kinase, in normal and malignant hematopoiesis. Blood. 1994;84:1931–41.

    Article  CAS  Google Scholar 

  25. Satomura K, Derubeis AR, Fedarko NS, Ibaraki-O’Connor K, Kuznetsov SA, Rowe DW, et al. Receptor tyrosine kinase expression in human bone marrow stromal cells. J Cell Physiol. 1998;177:426–38.

    Article  CAS  Google Scholar 

  26. Stankovic B, Bjørhovde HA, Skarshaug R, Aamodt H, Frafjord A, Müller E, et al. Immune cell composition in human non-small cell lung cancer. Front Immunol. 2019;9:3101.

    Article  Google Scholar 

  27. Bao XW, Shi R, Zhao TY, Wang YF, Anastasov N, Rosemann M, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC. Cancer Immunol Immunother. 2021;70:189–202.

    Article  CAS  Google Scholar 

  28. Zhang XS, Li QR, Zhao H, Ma LP, Meng T, Qian JC, et al. Pathological expression of tissue factor confers promising antitumor response to a novel therapeutic antibody SC1 in triple negative breast cancer and pancreatic adenocarcinoma. Oncotarget. 2017;8:59086–102.

    Article  Google Scholar 

  29. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  Google Scholar 

  30. Lu HH, Lin SY, Weng RR, Juan YH, Chen YW, Hou HH, et al. Fucosyltransferase 4 shapes oncogenic glycoproteome to drive metastasis of lung adenocarcinoma. EBioMedicine. 2020;57:102846.

    Article  Google Scholar 

  31. Chen YC, Hsiao CC, Chen KD, Hung YC, Wu CY, Lie CH, et al. Peripheral immune cell gene expression changes in advanced non-small cell lung cancer patients treated with first line combination chemotherapy. PLoS One. 2013;8:e57053.

    Article  CAS  Google Scholar 

  32. Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene. 2010;29:5254–64.

    Article  CAS  Google Scholar 

  33. Yu K, Shen JK, Meng T, Pei JP, Ma LP, Wang X, et al. AXL-targeting antibody, antibody-drug conjugate, preparation method therefor, and use thereof. US/2021/0214447.

  34. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003;21:778–84.

    Article  CAS  Google Scholar 

  35. Wan X, Zheng XY, Pang XY, Pang ZQ, Zhao JJ, Zhang ZM, et al. Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain. Oncotarget. 2016;7:34038–51.

    Article  Google Scholar 

  36. Zhang D, Yu SF, Khojasteh SC, Ma Y, Pillow TH, Sadowsky JD, et al. Intratumoral payload concentration correlates with the activity of antibody-drug conjugates. Mol Cancer Ther. 2018;17:677–85.

    Article  CAS  Google Scholar 

  37. Prat A, Navarro A, Paré L, Reguart N, Galván P, Pascual T, et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 2017;77:3540–50.

    Article  CAS  Google Scholar 

  38. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.

    Article  CAS  Google Scholar 

  39. Dehne N, Mora J, Namgaladze D, Weigert A, Brüne B. Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol. 2017;35:12–9.

    Article  CAS  Google Scholar 

  40. Santoni M, Romagnoli E, Saladino T, Foghini L, Guarino S, Capponi M, et al. Triple negative breast cancer: key role of tumor-associated macrophages in regulating the activity of anti-PD-1/PD-L1 agents. Biochim Biophys Acta Rev Cancer. 2018;1869:78–84.

    Article  CAS  Google Scholar 

  41. Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, van den Heuvel EG, Ligtenberg MA, et al. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med. 2018;24:203–12.

    Article  CAS  Google Scholar 

  42. Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi‐tool for tumor progression. EMBO J. 2021;40:e108647.

    Article  CAS  Google Scholar 

  43. Dongre A, Rashidian M, Eaton EN, Reinhardt F, Thiru P, Zagorulya M, et al. Direct and indirect regulators of epithelial-mesenchymal transition-mediated immunosuppression in breast carcinomas. Cancer Discov. 2021;11:1286–305.

    Article  CAS  Google Scholar 

  44. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66:605–12.

    Article  CAS  Google Scholar 

  45. Najafi M, Hashemi Goradel N, Farhood B, Salehi E, Nashtaei MS, Khanlarkhani N, et al. Macrophage polarity in cancer: a review. J Cell Biochem. 2019;120:2756–65.

    Article  CAS  Google Scholar 

  46. Tirado-Gonzalez I, Descot A, Soetopo D, Nevmerzhitskaya A, Schaffer A, Kur I-M, et al. AXL inhibition in macrophages stimulates host-versus-leukemia immunity and eradicates naive and treatment resistant leukemia. Cancer Discov. 2021;11:2924–43.

    Article  CAS  Google Scholar 

  47. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–44.

    Article  Google Scholar 

  48. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10:7063–70.

    Article  CAS  Google Scholar 

  49. Christie RJ, Fleming R, Bezabeh B, Woods R, Mao S, Harper J, et al. Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. J Control Release. 2015;220:660–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fudan University (EZF301002), The National Natural Science Foundation of China (81373442), NST Major Project of China (2018ZX09711002-008) and NBR 973 Program of China (2013CB932500). The authors thank Animal Facility, Instrument Center, School of Pharmacy, Fudan University and the CDSER/SIMM facility for study support.

Author information

Authors and Affiliations

Authors

Contributions

TM, JKS, KY designed research. JPP, YW, TM, LPM, XW, LL, YZ, ZQR, YD performed research. JPP, RJ, LPM, TM contributed new reagents or analytic tools. JPP, YW, TM analyzed data. JPP, YW, TM, KY wrote the paper.

Corresponding authors

Correspondence to Jing-kang Shen, Tao Meng or Ker Yu.

Ethics declarations

Competing interests

JPP, LPM, XW, RJ, JKS, TM and KY are listed as co-inventor in WO/2019/218944. The other authors declare no conflict of interest.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pei, Jp., Wang, Y., Ma, Lp. et al. AXL antibody and AXL-ADC mediate antitumor efficacy via targeting AXL in tumor-intrinsic epithelial-mesenchymal transition and tumor-associated M2-like macrophage. Acta Pharmacol Sin (2023). https://doi.org/10.1038/s41401-022-01047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-022-01047-6

Keywords

  • AXL
  • NSCLC
  • TNBC
  • M2-macrophage
  • antibody-drug conjugate

Search

Quick links