Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ginseng-derived panaxadiol ameliorates STZ-induced type 1 diabetes through inhibiting RORγ/IL-17A axis

Abstract

Retinoic-acid-receptor-related orphan receptor γ (RORγ) is a major transcription factor for proinflammatory IL-17A production. Here, we revealed that the RORγ deficiency protects mice from STZ-induced Type 1 diabetes (T1D) through inhibiting IL-17A production, leading to improved pancreatic islet β cell function, thereby uncovering a potential novel therapeutic target for treating T1D. We further identified a novel RORγ inverse agonist, ginseng-derived panaxadiol, which selectively inhibits RORγ transcriptional activity with a distinct cofactor recruitment profile from known RORγ ligands. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for panaxadiol in the RORγ ligand-binding pocket. Despite its inverse agonist activity, panaxadiol induced the C-terminal AF-2 helix of RORγ to adopt a canonical active conformation. Interestingly, panaxadiol ameliorates mice from STZ-induced T1D through inhibiting IL-17A production in a RORγ-dependent manner. This study demonstrates a novel regulatory function of RORγ with linkage of the IL-17A pathway in pancreatic β cells, and provides a valuable molecule for further investigating RORγ functions in treating T1D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RORγ deficiency protects mice from STZ-induced type 1 diabetes.
Fig. 2: Identification of Ginseng-derived panaxadiol as a unique RORγ inverse agonist.
Fig. 3: Molecular recognition of panaxadiol by RORγ.
Fig. 4: Structural comparison of the RORγ-panaxadiol complex with RORγ-UA.
Fig. 5: The structural determinants of the interactions of RORγ with panaxadiol.
Fig. 6: Panaxadiol decreases IL-17A expression and production.
Fig. 7: Panaxadiol alleviates STZ-induced type 1 diabetes in mice.

Similar content being viewed by others

Data availability

The structure of RORγ/panaxadiol/SRC2 ternary complex was deposited to the Protein Data Bank with PDB ID of 7W3P.

References

  1. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391:2449–62.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020;16:349–62.

    Article  CAS  PubMed  Google Scholar 

  3. Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8:226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.

    Article  PubMed  Google Scholar 

  5. Emamaullee JA, Davis J, Merani S, Toso C, Elliott JF, Thiesen A, et al. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes. 2009;58:1302–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Honkanen J, Nieminen JK, Gao R, Luopajarvi K, Salo HM, Ilonen J, et al. IL-17 immunity in human type 1 diabetes. J Immunol. 2010;185:1959–67.

    Article  CAS  PubMed  Google Scholar 

  7. Rajendran S, Quesada-Masachs E, Zilberman S, Graef M, Kiosses WB, Chu T, et al. IL-17 is expressed on beta and alpha cells of donors with type 1 and type 2 diabetes. J Autoimmun. 2021;123:102708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu F, Guo F, Zhu Y, Zhou Q, Li T, Xiang H, et al. IL-17 in pancreatic disease: pathogenesis and pharmacotherapy. Am J Cancer Res. 2020;10:3551–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng Z, Zheng F. A complex auxiliary: IL-17/Th17 signaling during type 1 diabetes progression. Mol Immunol. 2019;105:16–31.

    Article  CAS  PubMed  Google Scholar 

  10. Solt LA, Burris TP. Action of RORs and their ligands in (patho)physiology. Trends Endocrinol Metab. 2012;23:619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang MR, Rosen H, Griffin PR. RORs in autoimmune disease. Curr Top Microbiol Immunol. 2014;378:171–82.

    CAS  PubMed  Google Scholar 

  12. Zhang Y, Luo XY, Wu DH, Xu Y. ROR nuclear receptors: structures, related diseases, and drug discovery. Acta Pharmacol Sin. 2015;36:71–87.

    Article  PubMed  Google Scholar 

  13. Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7:e003.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu HE. Family reunion of nuclear hormone receptors: structures, diseases, and drug discovery. Acta Pharmacol Sin. 2015;36:1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jin L, Martynowski D, Zheng S, Wada T, Xie W, Li Y. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORgamma. Mol Endocrinol. 2010;24:923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strutzenberg TS, Zhu Y, Novick SJ, Garcia-Ordonez RD, Doebelin C, He Y, et al. Conformational changes of RORγ during response element recognition and coregulator engagement. J Mol Biol. 2021;433:167258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  18. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28:29–39.

    Article  CAS  PubMed  Google Scholar 

  19. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  PubMed  Google Scholar 

  20. Huh JR, Littman DR. Small molecule inhibitors of RORγt: targeting Th17 cells and other applications. Eur J Immunol. 2012;42:2232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jetten AM, Cook DN. (Inverse) Agonists of retinoic acid-related orphan receptor γ: regulation of immune responses, inflammation, and autoimmune disease. Annu Rev Pharmacol Toxicol. 2020;60:371–90.

    Article  CAS  PubMed  Google Scholar 

  22. Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature. 2011;472:486–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujita-Sato S, Ito S, Isobe T, Ohyama T, Wakabayashi K, Morishita K, et al. Structural basis of digoxin that antagonizes RORgamma t receptor activity and suppresses Th17 cell differentiation and interleukin (IL)-17 production. J Biol Chem. 2011;286:31409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu T, Wang X, Zhong B, Nurieva RI, Ding S, Dong C. Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORgamma t protein. J Biol Chem. 2011;286:22707–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patocka J, Nepovimova E, Wu W, Kuca K. Digoxin: pharmacology and toxicology-A review. Environ Toxicol Pharmacol 2020;79:103400.

    Article  CAS  PubMed  Google Scholar 

  26. Sun Q, He M, Zhang M, Zeng S, Chen L, Zhou L, et al. Ursolic acid: a systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia. 2020;147:104735.

    Article  CAS  PubMed  Google Scholar 

  27. Elias D, Prigozin H, Polak N, Rapoport M, Lohse AW, Cohen IR. Autoimmune diabetes induced by the beta-cell toxin STZ. Immunity to the 60-kDa heat shock protein and to insulin. Diabetes. 1994;43:992–8.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou L, He X, Cai P, Li T, Peng R, Dang J, et al. Induced regulatory T cells suppress Tc1 cells through TGF-β signaling to ameliorate STZ-induced type 1 diabetes mellitus. Cell Mol Immunol. 2021;18:698–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin L, Feng X, Rong H, Pan Z, Inaba Y, Qiu L, et al. The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism. Nat Commun. 2013;4:1937.

    Article  PubMed  Google Scholar 

  30. Zhang W, Zhang J, Fang L, Zhou L, Wang S, Xiang Z, et al. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds. Mol Pharmacol 2012;82:583–90.

    Article  CAS  PubMed  Google Scholar 

  31. Chung BH, Kim BM, Doh KC, Min JW, Cho ML, Kim KW, et al. Suppressive effect of 1α,25-Dihydroxyvitamin D3 on Th17-immune responses in kidney transplant recipients with tacrolimus-based immunosuppression. Transplantation. 2017;101:1711–9.

    Article  CAS  PubMed  Google Scholar 

  32. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–26.

    Article  CAS  PubMed  Google Scholar 

  33. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.

    Article  PubMed  Google Scholar 

  35. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yaochite JN, Caliari-Oliveira C, Davanso MR, Carlos D, Malmegrim KC, Cardoso CR, et al. Dynamic changes of the Th17/Tc17 and regulatory T cell populations interfere in the experimental autoimmune diabetes pathogenesis. Immunobiology. 2013;218:338–52.

    Article  CAS  PubMed  Google Scholar 

  37. Tong Z, Liu W, Yan H, Dong C. Interleukin-17A deficiency ameliorates streptozotocin-induced diabetes. Immunology. 2015;146:339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother. 2018;101:287–92.

    Article  CAS  PubMed  Google Scholar 

  39. Noguchi M, Nomura A, Murase K, Doi S, Yamaguchi K, Hirata K, et al. Ternary complex of human RORγ ligand-binding domain, inverse agonist and SMRT peptide shows a unique mechanism of corepressor recruitment. Genes Cells. 2017;22:535–51.

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Suino K, Daugherty J, Xu HE. Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol Cell. 2005;19:367–80.

    Article  CAS  PubMed  Google Scholar 

  41. de Vries R, Meijer FA, Doveston RG, Leijten-van de Gevel IA, Brunsveld L. Cooperativity between the orthosteric and allosteric ligand binding sites of RORγt. Proc Natl Acad Sci USA. 2021;118:e2021287118.

    Article  Google Scholar 

  42. Gampe RT Jr., Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, et al. Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell. 2000;5:545–55.

    Article  CAS  PubMed  Google Scholar 

  43. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, et al. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature. 2008;456:350–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. René O, Fauber BP, Boenig Gde L, Burton B, Eidenschenk C, Everett C, et al. Minor structural change to tertiary sulfonamide RORc ligands led to opposite mechanisms of action. ACS Med Chem Lett. 2015;6:276–81.

    Article  PubMed  Google Scholar 

  45. Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marwaha AK, Tan S, Dutz JP. Targeting the IL-17/IFN-γ axis as a potential new clinical therapy for type 1 diabetes. Clin Immunol. 2014;154:84–9.

    Article  CAS  PubMed  Google Scholar 

  47. Jörns A, Ishikawa D, Teraoku H, Yoshimoto T, Wedekind D, Lenzen S. Remission of autoimmune diabetes by anti-TCR combination therapies with anti-IL-17A or/and anti-IL-6 in the IDDM rat model of type 1 diabetes. BMC Med. 2020;18:33.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Solt LA, Banerjee S, Campbell S, Kamenecka TM, Burris TP. ROR inverse agonist suppresses insulitis and prevents hyperglycemia in a mouse model of type 1 diabetes. Endocrinology. 2015;156:869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pandya VB, Kumar S, Sachchidanand, Sharma R, Desai RC. Combating autoimmune diseases with retinoic acid receptor-related orphan receptor-γ (RORγ or RORc) inhibitors: hits and misses. J Med Chem. 2018;61:10976–95.

    Article  CAS  PubMed  Google Scholar 

  50. Asadi-Samani M, Bagheri N, Rafieian-Kopaei M, Shirzad H. Inhibition of Th1 and Th17 cells by medicinal plants and their derivatives: a systematic review. Phytother Res. 2017;31:1128–39.

    Article  CAS  PubMed  Google Scholar 

  51. Xu YY, Wang DM, Liang HS, Liu ZH, Li JX, Wang MJ, et al. The role of Th17/Treg Axis in the traditional Chinese medicine intervention on immune-mediated inflammatory diseases: a systematic review. Am J Chin Med. 2020;48:535–58.

    Article  CAS  PubMed  Google Scholar 

  52. Wang Z, Li MY, Zhang ZH, Zuo HX, Wang JY, Xing Y, et al. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol Res. 2020;155:104727.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff at BL19U1 of the Shanghai Synchrotron Radiation Source for assistance in data collection. This work was supported by grants from the National Natural Science Foundation of China (31770814).

Author information

Authors and Affiliations

Authors

Contributions

SYT, SMC, YYF and JLH conducted the experiments. SYT contributed to the experiment design, performed structural analysis and wrote the manuscript. YYF contributed in editing the manuscript. YL designed the experiment and revised the manuscript.

Corresponding author

Correspondence to Yong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Sy., Chen, Sm., Feng, Yy. et al. Ginseng-derived panaxadiol ameliorates STZ-induced type 1 diabetes through inhibiting RORγ/IL-17A axis. Acta Pharmacol Sin 44, 1217–1226 (2023). https://doi.org/10.1038/s41401-022-01042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-022-01042-x

Keywords

Search

Quick links