Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antitumor pharmacological research in the era of personalized medicine

Abstract

Anticancer drug discovery has yielded unprecedented progress in recent decades, resulting in the approval of innovative treatment options for patients and the successful implementation of personalized medicine in clinical practice. This remarkable progress has also reshaped the research scope of pharmacological research. This article, as a tribute to cancer research at Shanghai Institute of Materia Medica in celebration of the institute’s 90th birthday, provides an overview of the conceptual revolution occurring in anticancer therapy, and summarizes our recent progress in the development of molecularly targeted therapeutics and exploration of new strategies in personalized medicine. With this review, we hope to provide a glimpse into how antitumor pharmacological researchers have embraced the new era of personalized medicine research and to propose a future path for anticancer drug discovery and pharmacological research.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic diagram depicting therapeutic strategies exploiting targets conferring oncogene or non-oncogene addiction.
Fig. 2: Schematic diagram depicting a dual-biomarker guided personalized treatment of targeted anticancer therapy.
Fig. 3: Schematic diagram depicting a stepwise personalized combination strategy for EZH2 inhibitors.

References

  1. Huang M, Shen A, Ding J, Geng M. Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol Sci. 2014;35:41–50.

    Article  PubMed  Google Scholar 

  2. de Jonge MJ, Verweij J. Multiple targeted tyrosine kinase inhibition in the clinic: all for one or one for all? Eur J Cancer. 2006;42:1351–6.

    Article  PubMed  Google Scholar 

  3. Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol. 2006;33:407–20.

    Article  CAS  PubMed  Google Scholar 

  4. Weinstein IB. Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science. 2002;297:63–4.

    Article  CAS  PubMed  Google Scholar 

  5. Cohen P, Cross D, Janne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021;20:551–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paliouras S, Pearson A, Barkalow F. The most successful oncology drug portfolios of the past decade. Nat Rev Drug Discov. 2021;20:811–2.

    Article  CAS  PubMed  Google Scholar 

  7. Torti D, Trusolino L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med. 2011;3:623–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98.

    Article  CAS  PubMed  Google Scholar 

  9. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI, et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N Engl J Med. 2020;383:1207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217–23.

    Article  CAS  PubMed  Google Scholar 

  14. Herbst RS, Schlessinger J. Small molecule combats cancer-causing KRAS protein at last. Nature. 2019;575:294–5.

    Article  CAS  PubMed  Google Scholar 

  15. Miao ZH, Feng JM, Ding J. Newly discovered angiogenesis inhibitors and their mechanisms of action. Acta Pharmacol Sin. 2012;33:1103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dienstmann R, Andre F, Soria JC. Significant antitumor activity of E-3810, a novel FGFR and VEGFR inhibitor, in patients with FGFR1 amplified breast cancer. 2012 ESMO Congress 2012; Abstract 3190: Presented October 1, 2012.

  17. Zhou Y, Chen Y, Tong L, Xie H, Wen W, Zhang J, et al. AL3810, a multi-tyrosine kinase inhibitor, exhibits potent anti-angiogenic and anti-tumour activity via targeting VEGFR, FGFR and PDGFR. J Cell Mol Med. 2012;16:2321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Luo F, Ma YX, Liu QW, Yang YP, Fang WF, et al. A phase Ib study of lucitanib (AL3810) in a cohort of patients with recurrent and metastatic nasopharyngeal carcinoma. Oncologist. 2022;27:e453–62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ai J, Chen Y, Peng X, Ji Y, Xi Y, Shen Y, et al. Preclinical evaluation of SCC244 (glumetinib), a novel, potent, and highly selective inhibitor of c-Met in MET-dependent cancer models. Mol Cancer Ther. 2018;17:751–62.

    Article  CAS  PubMed  Google Scholar 

  20. Lu S, Yu Y, Zhou J, Goto K, Li X, Sakakibara-Konishi J, et al. Abstract CT034: phase II study of SCC244 in NSCLC patients harboring MET exon 14 skipping (METex14) mutations (GLORY study). Cancer Res. 2022;82(Suppl 12):CT034.

  21. Xiang HY, Wang X, Chen YH, Zhang X, Tan C, Wang Y, et al. Identification of methyl (5-(6-((4-(methylsulfonyl)piperazin-1-yl)methyl)-4-morpholinopyrrolo[2,1-f][1,2,4]triazin-2-yl)-4-(trifluoromethyl)pyridin-2-yl)carbamate (CYH33) as an orally bioavailable, highly potent, PI3K alpha inhibitor for the treatment of advanced solid tumors. Eur J Med Chem. 2021;209:112913.

    Article  CAS  PubMed  Google Scholar 

  22. Wei XL, Xu RH, Zhao H, Zhang Y, Zou BY, Wang F, et al. A first-in-human phase I study of CYH33, a phosphatidylinositol 3-kinase (PI3K) α selective inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2020;38(15_Supplement):e15645.

  23. Zhang T, Qu R, Chan S, Lai M, Tong L, Feng F, et al. Discovery of a novel third-generation EGFR inhibitor and identification of a potential combination strategy to overcome resistance. Mol Cancer. 2020;19:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi Y, Li B, Wu L, Pan Y, Pan Z, Liu Y, et al. Efficacy and safety of limertinib (ASK120067) in patients with locally advanced or metastatic EGFR Thr790Met-mutated NSCLC: a multicenter, single-arm, phase 2b study. J Thorac Oncol. 2022;17:1205–15.

    Article  CAS  PubMed  Google Scholar 

  25. Xia ZJ, Ji YC, Sun DQ, Peng X, Gao YL, Fang YF, et al. SAF-189s, a potent new-generation ROS1 inhibitor, is active against crizotinib-resistant ROS1 mutant-driven tumors. Acta Pharmacol Sin. 2021;42:998–1004.

    Article  CAS  PubMed  Google Scholar 

  26. Chen XX, Shen QQ, Zhao Z, Fang YF, Yang JY, Gao YL, et al. Abstract 5436: HH2853 is a selective small molecular dual inhibitor of EZH1/2 with potent anti-tumor activities. Cancer Res. 2022;82(12_Supplement):5436.

  27. Wang X, Chen Z, Xu J, Tang S, An N, Jiang L, et al. SLC1A1-mediated cellular and mitochondrial influx of R-2-hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-mutant solid tumors. Cell Res. 2022;32:638–58.

    Article  CAS  PubMed  Google Scholar 

  28. Beckman RA, Clark J, Chen C. Integrating predictive biomarkers and classifiers into oncology clinical development programmes. Nat Rev Drug Discov. 2011;10:735–48.

    Article  CAS  PubMed  Google Scholar 

  29. Kelloff GJ, Sigman CC. Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov. 2012;11:201–14.

    Article  CAS  PubMed  Google Scholar 

  30. Shen A, Wang L, Huang M, Sun J, Chen Y, Shen YY, et al. c-Myc alterations confer therapeutic response and acquired resistance to c-Met inhibitors in MET-addicted cancers. Cancer Res. 2015;75:4548–59.

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Ai J, Shen A, Chen Y, Wang X, Peng X, et al. c-Myc alteration determines the therapeutic response to FGFR inhibitors. Clin Cancer Res. 2017;23:974–84.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang Y, Zeng Q, Jiang Q, Peng X, Gao J, Wan H, et al. (18)F-FDG PET as an imaging biomarker for the response to FGFR-targeted therapy of cancer cells via FGFR-initiated mTOR/HK2 axis. Theranostics. 2022;12:6395–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136:823–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Francies HE, McDermott U, Garnett MJ. Genomics-guided pre-clinical development of cancer therapies. Nat Cancer. 2020;1:482–92.

    Article  PubMed  Google Scholar 

  35. Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol. 2020;17:91–107.

    Article  CAS  PubMed  Google Scholar 

  36. Zeng H, Qu J, Jin N, Xu J, Lin C, Chen Y, et al. Feedback activation of leukemia inhibitory factor receptor limits response to histone deacetylase inhibitors in breast cancer. Cancer Cell. 2016;30:459–73.

    Article  CAS  PubMed  Google Scholar 

  37. Huang X, Yan J, Zhang M, Wang Y, Chen Y, Fu X, et al. Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors. Cell. 2018;175:186–99.e19.

    Article  CAS  PubMed  Google Scholar 

  38. Xie Q, Chi S, Fang Y, Sun Y, Meng L, Ding J, et al. PI3Kalpha inhibitor impairs AKT phosphorylation and synergizes with novel angiogenesis inhibitor AL3810 in human hepatocellular carcinoma. Signal Transduct Target Ther. 2021;6:130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xing H, Gao M, Wang Y, Zhang X, Shi J, Wang X, et al. Genome-wide gain-of-function screening identifies EZH2 mediating resistance to PI3Kalpha inhibitors in oesophageal squamous cell carcinoma. Clin Transl Med. 2022;12:e835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Li X, Liu X, Chen Y, Yang C, Tan C, et al. Simultaneous inhibition of PI3Kalpha and CDK4/6 synergistically suppresses KRAS-mutated non-small cell lung cancer. Cancer Biol Med. 2019;16:66–83.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun P, Zhang X, Wang RJ, Ma QY, Xu L, Wang Y, et al. PI3Kalpha inhibitor CYH33 triggers antitumor immunity in murine breast cancer by activating CD8+ T cells and promoting fatty acid metabolism. J Immunother Cancer. 2021;9:e003093.

  42. Qu J, Sun W, Zhong J, Lv H, Zhu M, Xu J, et al. Phosphoglycerate mutase 1 regulates dNTP pool and promotes homologous recombination repair in cancer cells. J Cell Biol. 2017;216:409–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Z, Liu Y, Qian L, Jiang S, Gai X, Ye S, et al. A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies. Mol Cell. 2021;81:4076–90.e8.

    Article  CAS  PubMed  Google Scholar 

  44. de Miguel M, Calvo E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell. 2020;38:326–33.

    Article  PubMed  Google Scholar 

  45. Galluzzi L, Humeau J, Buque A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 2020;17:725–41.

    Article  PubMed  Google Scholar 

  46. Lian Q, Xu J, Yan S, Huang M, Ding H, Sun X, et al. Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res. 2017;27:784–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank all the individuals who have contributed to the work that has been reviewed in this article, including all the members who were either directly or indirectly involved in the Division of Antitumor Pharmacology at SIMM, as well as all our collaborators. This work is supported by the National Natural Science Foundation of China for Innovation Research Group (No. 81821005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ding.

Ethics declarations

Competing interests

M.H. was a consultant of Haihe Biopharma and J.D. is the Chairman of Board of Haihe Biopharma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Geng, My. & Ding, J. Antitumor pharmacological research in the era of personalized medicine. Acta Pharmacol Sin 43, 3015–3020 (2022). https://doi.org/10.1038/s41401-022-01023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-022-01023-0

Keywords

  • personalized medicine
  • anticancer drug discovery
  • oncogene addiction
  • non-oncogene addiction
  • combination therapy

This article is cited by

Search

Quick links