Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Construction of stable membranal CMTM6-PD-L1 full-length complex to evaluate the PD-1/PD-L1-CMTM6 interaction and develop anti-tumor anti-CMTM6 nanobody

Abstract

CKLF (chemokine-like factor)-MARVEL transmembrane domain containing protein 6 (CMTM6) is a novel regulator to maintain the stability of PD-L1. CMTM6 can colocalize and interact with PD-L1 on the recycling endosomes and cell membrane, preventing PD-L1 from lysosome-mediated degradation and proteasome-mediated degradation thus increasing the half-life of PD-L1 on the cell membrane. The difficulties in obtaining stable full-length PD-L1 and CMTM6 proteins hinder the research on their structures, function as well as related drug development. Using lauryl maltose neopentyl glycol (LMNG) as the optimized detergent and a cell membrane mimetic strategy, we assembled a stable membrane-bound full-length CMTM6-PD-L1 complex with amphipol A8-35. When the PD-1/PD-L1-CMTM6 interactions were analyzed, we found that CMTM6 greatly enhanced the binding and delayed the dissociation of PD-1/PD-L1, thus affecting immunosuppressive signaling and anti-apoptotic signaling. We then used the CMTM6-PD-L1 complex as immunogens to generate immune repertoires in camels, and identified a functional anti-CMTM6 nanobody, called 1A5. We demonstrated that the anti-CMTM6 nanobody greatly decreased T-cell immunosuppression and promoted apoptotic susceptibility of tumor cells in vitro, and mainly relied on the cytotoxic effect of CD8+ T-cells to exert tumor growth inhibitory effects in CT26 tumor-bearing mice. In conclusion, the stable membrane-bound full-length CMTM6-PD-L1 complex has been successfully used in studying PD-1/PD-L1-CMTM6 interactions and CMTM6-targeting drug development, suggesting CMTM6 as a novel tumor immunotherapy target.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction of stable membranal CMTM6-PD-L1 complex and analysis of PD-1/PD-L1-CMTM6 interaction.
Fig. 2: Screening of anti-CMTM6 nanobody and analysis of CMTM6-nanobody interaction.
Fig. 3: CMTM6 nanobody interfered with PD-1/PD-L1 signaling and inhibited tumor growth.
Fig. 4: CMTM6 nanobody relied on CD8+ T-cells to inhibit tumor growth.

References

  1. Han W, Ding P, Xu M, Wang L, Rui M, Shi S, et al. Identification of eight genes encoding chemokine-like factor superfamily members 1–8 (CKLFSF1–8) by in silico cloning and experimental validation. Genomics. 2003;81:609–17.

    Article  CAS  PubMed  Google Scholar 

  2. Jin C, Ding P, Wang Y, Ma D. Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8. FEBS Lett. 2005;579:6375–82.

    Article  CAS  PubMed  Google Scholar 

  3. Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W, et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature. 2017;549:106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guan X, Zhang C, Zhao J, Sun G, Song Q, Jia W. CMTM6 overexpression is associated with molecular and clinical characteristics of malignancy and predicts poor prognosis in gliomas. EBioMedicine. 2018;35:233–43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen L, Yang QC, Li YC, Yang LL, Liu JF, Li H, et al. Targeting CMTM6 suppresses stem cell-like properties and enhances antitumor immunity in head and neck squamous cell carcinoma. Cancer Immunol Res. 2020;8:179–91.

    Article  CAS  PubMed  Google Scholar 

  7. Martinez-Morilla S, Zugazagoitia J, Wong PF, Kluger HM, Rimm DL. Quantitative analysis of CMTM6 expression in tumor microenvironment in metastatic melanoma and association with outcome on immunotherapy. Oncoimmunology. 2020;10:1864909.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu X, Lan X, Hu W, Zhang W, Lai X, Xu S, et al. CMTM6 expression in M2 macrophages is a potential predictor of PD-1/PD-L1 inhibitor response in colorectal cancer. Cancer Immunol Immunother. 2021;70:3235–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Chen L, Gu C, Sun Q, Li J. CMTM6 significantly relates to PD-L1 and predicts the prognosis of gastric cancer patients. PeerJ. 2020;8:e9536.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhao Y, Zhang M, Pu H, Guo S, Zhang S, Wang Y. Prognostic Implications of Pan-Cancer CMTM6 Expression and Its Relationship with the Immune Microenvironment. Front Oncol. 2020;10:585961.

    Article  PubMed  Google Scholar 

  11. Zheng Y, Wang C, Song A, Jiang F, Zhou J, Li G, et al. CMTM6 promotes cell proliferation and invasion in oral squamous cell carcinoma by interacting with NRP1. Am J Cancer Res. 2020;10:1691–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang H, Fan Y, Chen W, Lv Z, Wu S, Xuan Y, et al. Loss of CMTM6 promotes DNA damage-induced cellular senescence and antitumor immunity. Oncoimmunology. 2022;11:2011673.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mohapatra P, Shriwas O, Mohanty S, Ghosh A, Smita S, Kaushik SR, et al. CMTM6 drives cisplatin resistance by regulating Wnt signaling through the ENO-1/AKT/GSK3beta axis. JCI Insight. 2021;6:e143643.

    PubMed  PubMed Central  Google Scholar 

  14. Pang X, Wang SS, Zhang M, Jiang J, Fan HY, Wu JS, et al. OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway. Cancer Immunol Immunother. 2021;70:1015–29.

    Article  CAS  PubMed  Google Scholar 

  15. Huang Y, Zhu Y, Yang J, Pan Q, Zhao J, Song M, et al. CMTM6 inhibits tumor growth and reverses chemoresistance by preventing ubiquitination of p21 in hepatocellular carcinoma. Cell Death Dis. 2022;13:251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Z, Peng Z, Liu Q, Guo Z, Menatola M, Su J, et al. Co-expression with membrane CMTM6/4 on tumor epithelium enhances the prediction value of PD-L1 on Anti-PD-1/L1 therapeutic efficacy in gastric adenocarcinoma. Cancers (Basel). 2021;13:5175.

    Article  CAS  PubMed  Google Scholar 

  17. Althoff T, Mills DJ, Popot JL, Kühlbrandt W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 2011;30:4652–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kevany BM, Tsybovsky Y, Campuzano ID, Schnier PD, Engel A, Palczewski K. Structural and functional analysis of the native peripherin-ROM1 complex isolated from photoreceptor cells. J Biol Chem. 2013;288:36272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsybovsky Y, Orban T, Molday RS, Taylor D, Palczewski K. Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure. 2013;21:854–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang EY, Shah K. Nanobodies: Next generation of cancer diagnostics and therapeutics. Front Oncol. 2020;10:1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahuja S, Rougé L, Swem DL, Sudhamsu J, Wu P, Russell SJ, et al. Structural analysis of bacterial ABC transporter inhibition by an antibody fragment. Structure. 2015;23:713–23.

    Article  CAS  PubMed  Google Scholar 

  22. Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood. 2008;111:3635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J, et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med. 2018;10:eaan5488.

    Article  PubMed  Google Scholar 

  24. Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H, et al. ImmuCellAI: A unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci (Weinh). 2020;7:1902880.

    Article  CAS  PubMed  Google Scholar 

  25. Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci USA. 2015;112:E6506–E6514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng X, Veverka V, Radhakrishnan A, Waters LC, Muskett FW, Morgan SH, et al. Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem. 2013;288:11771–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52:17–35.

    Article  CAS  PubMed  Google Scholar 

  29. Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76:359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang H, Yao H, Li C, Shi H, Lan J, Li Z, et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat Chem Biol. 2019;15:42–50.

    Article  CAS  PubMed  Google Scholar 

  31. Ren Y, Qian Y, Ai L, Xie Y, Gao Y, Zhuang Z, et al. TRAPPC4 regulates the intracellular trafficking of PD-L1 and antitumor immunity. Nat Commun. 2021;12:5405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Y, Liu P, Gao F, Cheng H, Qi J, Gao GF. A dimeric structure of PD-L1: functional units or evolutionary relics? Protein Cell. 2010;1:153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zak KM, Grudnik P, Magiera K, Dömling A, Dubin G, Holak TA. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure. 2017;25:1163–74.

    Article  CAS  PubMed  Google Scholar 

  34. Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Dömling A, et al. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget. 2016;7:30323–35.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guo Y, Jin Y, Wang B, Liu B. Molecular mechanism of small-molecule inhibitors in blocking the PD-1/PD-L1 pathway through PD-L1 dimerization. Int J Mol Sci. 2021;22:4766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 31670743), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA12040326), Science and Technology Commission of Shanghai Municipality (No. 3918JC141540001), Joint Research Fund for Overseas, Hong Kong and Macao Scholars (No. 81628013), Natural Science Foundation of Shanghai (16ZR1442900), National Science Foundation for Young Scholar projects (118180359901) and The grand from the Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CASIMM0120164013, SIMM1606YZZ-06, SIMM1601KF-06, 55201631121116101, 55201631121108000, 5112345601, 2015123456005, CASIMM0120202003). We would like to thank colleagues from the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, who provided advice and technical support.

Author information

Authors and Affiliations

Authors

Contributions

YG, LKG, XMJ, and YRL designed the experiments and analyzed the data. XMJ and YRL performed the experiments and prepared the paper. XLY and RQC assisted in performing the experiments and preparing the paper. All authors approved the final draft of the paper.

Corresponding authors

Correspondence to Li-kun Gong or Yong Geng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, Xm., Long, Yr., Yu, Xl. et al. Construction of stable membranal CMTM6-PD-L1 full-length complex to evaluate the PD-1/PD-L1-CMTM6 interaction and develop anti-tumor anti-CMTM6 nanobody. Acta Pharmacol Sin (2022). https://doi.org/10.1038/s41401-022-01020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-022-01020-3

Keywords

  • cancer immunotherapy
  • CMTM6
  • CMTM6/PD-L1 complex
  • protein interactions
  • anti-CMTM6 nanobody

Search

Quick links