Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibiting von Hippel‒Lindau protein-mediated Dishevelled ubiquitination protects against experimental parkinsonism

Abstract

Dopaminergic neuron degeneration is a hallmark of Parkinson’s disease (PD). We previously reported that the inactivation of von Hippel‒Lindau (VHL) alleviated dopaminergic neuron degeneration in a C. elegans model. In this study, we investigated the specific effects of VHL loss and the underlying mechanisms in mammalian PD models. For in vivo genetic inhibition of VHL, AAV-Vhl-shRNA was injected into mouse lateral ventricles. Thirty days later, the mice received MPTP for 5 days to induce PD. Behavioral experiments were conducted on D1, D3, D7, D14 and D21 after the last injection, and the mice were sacrificed on D22. We showed that knockdown of VHL in mice significantly alleviated PD-like syndromes detected in behavioral and biochemical assays. Inhibiting VHL exerted similar protective effects in MPP+-treated differentiated SH-SY5Y cells and the MPP+-induced C. elegans PD model. We further demonstrated that VHL loss-induced protection against experimental parkinsonism was independent of hypoxia-inducible factor and identified the Dishevelled-2 (DVL-2)/β-catenin axis as the target of VHL, which was evolutionarily conserved in both C. elegans and mammals. Inhibiting the function of VHL promoted the stability of β-catenin by reducing the ubiquitination and degradation of DVL-2. Thus, in vivo overexpression of DVL-2, mimicking VHL inactivation, protected against PD. We designed a competing peptide, Tat-DDF-2, to inhibit the interaction between VHL and DVL-2, which exhibited pharmacological potential for protection against PD in vitro and in vivo. We propose the therapeutic potential of targeting the interaction between VHL and DVL-2, which may represent a strategy to alleviate neurodegeneration associated with PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VHL knockdown prevents behavioral and pathological abnormalities in PD model mice.
Fig. 2: Genetic and pharmacological inhibition of VHL alleviates parkinsonian toxicant-induced neurodegeneration in cell and nematode models.
Fig. 3: Evidence for the role of DVL-2 in VHL inactivation conferring protection against PD.
Fig. 4: DVL-2 overexpression mimics VHL inactivation followed by β-catenin axis enhancement and confers protection against PD.
Fig. 5: β-catenin plays a key role in mediating the alleviation effects of VHL inhibition on the degeneration of dopaminergic neurons caused by mitochondrial dysfunction.
Fig. 6: Design and screening of the competing peptide targeting VHL/DVL-2 and evaluation of its protection against PD.

Similar content being viewed by others

References

  1. Olsen AL, Feany MB. PARP inhibitors and Parkinson’s disease. N Engl J Med. 2019;380:492–4.

    Article  PubMed  Google Scholar 

  2. Dorsey ER, Bloem BR. The Parkinson pandemic-a call to action. JAMA Neurol. 2018;75:9–10.

    Article  PubMed  Google Scholar 

  3. Hayes MT. Parkinson’s disease and Parkinsonism. Am J Med. 2019;132:802–7.

    Article  PubMed  Google Scholar 

  4. Przedborski S. The two-century journey of Parkinson disease research. Nat Rev Neurosci. 2017;18:251–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kalia LV, Lang AE. Parkinson disease in 2015: Evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol. 2016;12:65–6.

    Article  CAS  PubMed  Google Scholar 

  6. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Prim. 2017;3:17013.

    Article  PubMed  Google Scholar 

  7. Faure P, Tolu S, Valverde S, Naude J. Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience. 2014;282:86–100.

    Article  CAS  PubMed  Google Scholar 

  8. Patel JC, Rossignol E, Rice ME, Machold RP. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat Commun. 2012;3:1172.

    Article  PubMed  Google Scholar 

  9. Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007;30:259–88.

    Article  CAS  PubMed  Google Scholar 

  10. Verharen JPH, de Jong JW, Lammel S. Dopaminergic control over the tripartite synapse. Neuron. 2020;105:954–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krashia P, Cordella A, Nobili A, La Barbera L, Federici M, Leuti A, et al. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat Commun. 2019;10:3945.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bankapalli K, Vishwanathan V, Susarla G, Sunayana N, Saladi S, Peethambaram D, et al. Redox-dependent regulation of mitochondrial dynamics by DJ-1 paralogs in Saccharomyces cerevisiae. Redox Biol. 2020;32:101451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Langston JW. The MPTP story. J Parkinsons Dis. 2017;7:S11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guo RY, Zong S, Wu M, Gu JK, Yang MJ. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell. 2017;170:1247–57.

    Article  CAS  PubMed  Google Scholar 

  15. Pitkanen S, Robinson BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest. 1996;98:345–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-López M. Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol Biosci. 2016;3:43.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen S, Luo S, Zhang Z, Ma DK. VHL-1 inactivation and mitochondrial antioxidants rescue C. elegans dopaminergic neurodegeneration. Protein Cell. 2019;10:610–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferrari M, Jain IH, Goldberger O, Rezoagli E, Thoonen R, Cheng KH, et al. Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. Proc Natl Acad Sci USA. 2017;114:E4241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu Y, Jiang ZS, Li ZH, Gu J, You QD, Zhang XJ. Click chemistry-based discovery of [3-Hydroxy-5-(1 H-1,2,3-triazol-4-yl)picolinoyl]glycines as orally active hypoxia-inducing factor prolyl hydroxylase inhibitors with favorable safety profiles for the treatment of anemia. J Med Chem. 2018;61:5332–49.

    Article  CAS  PubMed  Google Scholar 

  20. Chen S, Liu AR, An FM, Yao WB, Gao XD. Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age. 2012;34:1211–24.

    Article  CAS  PubMed  Google Scholar 

  21. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2001;2:Research0002.1–10.

    Google Scholar 

  22. Xu DP, Duan HW, Zhang ZJ, Cui W, Wang L, Sun YW, et al. The novel tetramethylpyrazine bis-nitrone (TN-2) protects against MPTP/MPP+-induced neurotoxicity via inhibition of mitochondrial-dependent apoptosis. J Neuroimmune Pharmacol. 2014;9:245–58.

    Article  PubMed  Google Scholar 

  23. Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM, Ellis L, et al. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nat Commun. 2016;7:13312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Besarab A, Chernyavskaya E, Motylev I, Shutov E, Kumbar LM, Gurevich K, et al. Roxadustat (FG-4592): correction of anemia in incident dialysis patients. J Am Soc Nephrol. 2016;27:1225–33.

    Article  CAS  PubMed  Google Scholar 

  25. Koh MY, Spivak-Kroizman TR, Powis G. Inhibiting the hypoxia response for cancer therapy: the new kid on the block. Clin Cancer Res. 2009;15:5945–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290–5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Corn PG, McDonald ER 3rd, Herman JG, El-Deiry WS. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nat Genet. 2003;35:229–37.

    Article  CAS  PubMed  Google Scholar 

  28. Ma BY, Liu BF, Cao WP, Gao C, Qi Z, Ning YH, et al. The wnt signaling antagonist Dapper1 accelerates Dishevelled2 degradation via promoting its ubiquitination and aggregate-induced autophagy. J Biol Chem. 2015;290:12346–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Metcalfe C, Ibrahim AE, Graeb M, de la Roche M, Schwarz-Romond T, Fiedler M, et al. Dvl2 promotes intestinal length and neoplasia in the ApcMin mouse model for colorectal cancer. Cancer Res. 2010;70:6629–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang SM, Mishina YM, Liu SM, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.

    Article  CAS  PubMed  Google Scholar 

  31. Armstrong MJ, Okun MS. Time for a new image of Parkinson disease. JAMA Neurol. 2020;77:1345–6.

    Article  PubMed  Google Scholar 

  32. Arun S, Liu L, Donmez G. Mitochondrial biology and neurological diseases. Curr Neuropharmacol. 2016;14:143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsieh CH, Shaltouki A, Gonzalez AE, Bettencourt da Cruz A, Burbulla LF, St Lawrence E, et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell. 2016;19:709–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989;1:1269.

    Article  CAS  PubMed  Google Scholar 

  35. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol. 1997;12:25–31.

    CAS  PubMed  Google Scholar 

  36. Wang YQ, Chen C, Huang WL, Huang MX, Wang JH, Chen XC, et al. Beneficial effects of PGC-1α in the substantia nigra of a mouse model of MPTP-induced dopaminergic neurotoxicity. Aging. 2019;11:8937–50.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Triepels RH, van den Heuvel LP, Loeffen JL, Buskens CA, Smeets RJ, Rubio Gozalbo ME, et al. Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol. 1999;45:787–90.

    Article  CAS  PubMed  Google Scholar 

  38. Fiedorczuk K, Sazanov LA. Mammalian mitochondrial complex I structure and disease-causing mutations. Trends Cell Biol. 2018;28:835–67.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu YY, Zhao YX, Zou L, Zhang DF, Aki D, Liu YC. The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. J Exp Med. 2019;216:1664–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cargill K, Hemker SL, Clugston A, Murali A, Mukherjee E, Liu J, et al. Von Hippel-Lindau acts as a metabolic switch controlling nephron progenitor differentiation. J Am Soc Nephrol. 2019;30:1192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nguyen-Tran HH, Nguyen TN, Chen CY, Hsu T. Endothelial reprogramming stimulated by oncostatin M promotes inflammation and tumorigenesis in VHL-deficient kidney tissue. Cancer Res. 2021;81:5060–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  43. Gao C, Cao WP, Bao L, Zuo W, Xie GM, Cai TT, et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol. 2010;12:781–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 82173728, 81872850, 82073755 and 81673435), the “Double First-Class” University Project (No. CPU2018GF08), Qing Lan Project of Jiangsu Province and PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions).

Author information

Authors and Affiliations

Authors

Contributions

JS: Conceptualization, Methodology, Investigation, Writing-Original Draft, Writing-Review and Editing. QZ: Conceptualization, Methodology, Investigation, Writing-Original Draft, Writing-Review and Editing. QHY: Conceptualization, Methodology, Investigation, Writing-Original Draft, Writing-Review and Editing. YQZ: Investigation. XL: Investigation. YJC: Investigation. GXQ: Investigation. XJZ: Investigation. WBY: Conceptualization, Writing-Review and Editing, Funding acquisition, Supervision. XDG: Conceptualization, Writing-Review and Editing, Funding acquisition, Supervision. SC: Conceptualization, Writing-Review and Editing, Funding acquisition, Supervision.

Corresponding authors

Correspondence to Wen-bing Yao, Xiang-dong Gao or Song Chen.

Ethics declarations

Competing interests

The authors declare no competing interests. XDG, SC, QHY, YQZ and WBY have applied for patent related to this study.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Zha, Q., Yang, Qh. et al. Inhibiting von Hippel‒Lindau protein-mediated Dishevelled ubiquitination protects against experimental parkinsonism. Acta Pharmacol Sin 44, 940–953 (2023). https://doi.org/10.1038/s41401-022-01014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-022-01014-1

Keywords

This article is cited by

Search

Quick links