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Kelch-like proteins in the gastrointestinal tumors
An-bo Fu1,2,3, Sen-feng Xiang1, Qiao-jun He1,4 and Mei-dan Ying1,4

Gastrointestinal tumors have become a worldwide health problem with high morbidity and poor clinical outcomes. Chemotherapy
and surgery, the main treatment methods, are still far from meeting the treatment needs of patients, and targeted therapy is in
urgent need of development. Recently, emerging evidence suggests that kelch-like (KLHL) proteins play essential roles in
maintaining proteostasis and are involved in the progression of various cancers, functioning as adaptors in the E3 ligase complex
and promoting the specific degradation of substrates. Therefore, KLHL proteins should be taken into consideration for targeted
therapy strategy discovery. This review summarizes the current knowledge of KLHL proteins in gastrointestinal tumors and
discusses the potential of KLHL proteins as potential drug targets and prognostic biomarkers.
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INTRODUCTION
Gastrointestinal tumors refer to those occurring in the digestive
system, mainly including gastric, liver, colorectal, and pancreatic
cancers, according to WHO classification [1]. Because of diagnostic
difficulties and high morbidity, treating gastrointestinal tumors
remains a difficult problem worldwide. Current treatments mainly
include surgical resection and chemotherapy, but their therapeu-
tic benefit implies we are far from an efficient cure [2]. Targeted
drugs should achieve better therapeutic effects, but few of them
are applied for the treatment of gastrointestinal tumors, high-
lighting the urgent need for the development of novel drug
targets and prognostic biomarkers.
Kelch-like (KLHL) proteins, encoded by Kelch-like (KLHL) gene

family members, function as substrate adaptors of the Cul3-
scaffold E3 ligase complex and are the key factors that recognize
and interact with substrates. KLHL proteins (KLHLs) mediate the
ubiquitination of substrates and determine degradation fate and
are thereby responsible for maintaining substrate homeostasis.
Since substrate homeostasis plays an essential role in a wide range
of cellular life activities, the function of KLHLs as key regulators of
protein homeostasis under physiological and pathological condi-
tions should be emphasized.
In recent years, an increasing number of studies have revealed

that KLHLs are recurrently dysfunctional in gastrointestinal tumors,
which is associated with tumor progression, suggesting that
aberrant KLHLs generate an imbalance in protein homeostasis. For
example, studies revealed that decreased expression of Keap1
(KLHL19) promoted the growth of pancreatic cancer cells [3], and
increased KLHL21 expression was closely related to unfavorable
outcomes in patients with cholangiocarcinoma [4]. Based on the
specificity and importance of KLHLs in regulating substrate
ubiquitination and stability, targeted inhibition of KLHL function
may provide new insights for gastrointestinal tumor therapy.

Therefore, this review will provide an overview of the biological
functions and clinical significance of KLHLs in gastrointestinal
tumors, attempt to match different KLHLs to drug targets or
prognostic biomarkers, and ultimately propose potential targeted
strategies for gastrointestinal tumor therapy.

KLHL ABERRATIONS IN GASTROINTESTINAL TUMORS AND
THEIR CLINICAL SIGNIFICANCE
Various aberrations of KLHLs are frequently found in many
gastrointestinal tumors, including mutations, deletions, hyper-
methylation, fusions and aberrant expression (Table 1). These
aberrations result in global proteome alterations and proteostasis
imbalance, suggesting that KLHLs play crucial roles in gastro-
intestinal tumors. Several mutations in KLHL19 have been
reported in gastrointestinal tumors, e.g., N222S in pancreatic
cancer; F280L, Q82H, and G350S in gastric cancer; and Q359X in
colorectal cancer [5, 6]. Many of these mutations cause
constitutive activation of Nrf2, which is commonly associated
with poor prognosis of patients. Surprisingly, mutations at the
same site have been observed in various malignancies. For
example, G379D has been found in liver and gallbladder cancers
[7, 8]. Gene mutations commonly lead to a considerable loss of
KLHL activities, followed by dysregulation of downstream proteins
and disease development. Additionally, deletions and promoter
hypermethylation have been discovered in gastrointestinal
tumors. Full-length deletion of KLHL9 was observed in 5.46% of
gastric cancers and might partly account for gastric tumorigenesis
[9]. Hypermethylation, a vital epigenetic modification, was found
in KLHL19 and KLHL35 in colorectal and liver cancers, respectively
[10, 11]. Notably, low expression of these KLHLs induced by
epigenetic alterations is associated with poor survival. Further-
more, fusion is another common cause of aberrations. The
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PHOSPHO2-KLHL23 fusion has been reported in both liver and
gastric cancers [12, 13], and NR5A2-KLHL29 was detected in
colorectal cancer [14]. Clinically, fusions display a tumor-specific
pattern and are associated with prognosis.
Aberrant expression is the most typical type of aberration. For

instance, it was reported that KLHL21 was highly expressed in
hepatocellular carcinoma [15], whereas KLHL19, KLHL23, and
KLHL30 had decreased expression [12, 16, 17]. KLHL4 and KLHL22
were downregulated in colorectal cancer [18, 19], while KLHL37
was upregulated [20]. In addition, we noticed that some KLHLs
were important by data analysis, which drew little attention before
[21]. For example, the expression levels of KLHL7 and KLHL15 were
found to be elevated in esophageal cancer, while the levels of
KLHL17 and KLHL36 were decreased in gastric cancer. Various
KLHLs, such as KLHL5 and KLHL27, are typically highly expressed
in gastrointestinal tumors. Based on their distinct expression
profiles, the clinical significance of KLHLs needs to be determined.
Reduced KLHL19 expression is related to poor overall survival in
liver cancer [16]. A study revealed that higher KLHL21 expression
was linked to unfavorable outcomes in cholangiocarcinoma [4].
Downregulation of KLHL39 in colorectal cancer was correlated
with higher TNM stage and shorter survival [22]. Additionally, we
assessed the expression of the abovementioned KLHLs that had
previously garnered little interest in relevant samples. For
example, increased expression of KLHL15 was associated with
unsatisfactory survival in esophageal cancer, while there was a

significant correlation between high KLHL36 expression and good
outcomes in pancreatic cancer and cholangiocarcinoma.
KLHLs show distinct clinical significance and characteristic

aberrant expression patterns, emphasizing the importance of
KLHLs in gastrointestinal tumors. Some aberrations are tightly
linked with gastrointestinal tumors, and such aberrations lead to
sharply decreased tumor suppression or substantially increased
tumor promotion. Decreased tumor suppression may suggest
utility as a prognostic biomarker, and increased tumor promotion
may suggest utility as a drug target. As adaptors, KLHLs participate
in a range of biological processes due to their interactions with
various substrates. Aberrations of KLHLs caused by pathological
situations lead to substrate dysfunction, eventually resulting in
malignant transformation and tumorigenesis. Here, we focus on
several representative KLHLs and discuss their regulation of
substrates.

THE SUBSTRATES AND PATHOLOGICAL DYSFUNCTION OF
KLHLS IN GASTROINTESTINAL TUMORS
KLHLs are adaptors that interact with a variety of substrates in the
E3 enzyme, consisting of three characteristic domains: the bric-a-
brac, tramtrack, broad complex (BTB)/poxvirus and zinc finger
(POZ) domain, the BACK domain, and the Kelch domain (Fig. 1).
The Kelch domain specifically recognizes and interacts with
substrates, and the BTB/POZ domain is responsible for binding

Table 1. Aberrations of KLHLs in gastrointestinal tumors.

KLHLs Cancer types Aberrations Sites References

KLHL4 READ Low-expression N/A [18]

KLHL5 CRC High-expression N/A [83]

STAD High-expression N/A [84]

KLHL6 GC High-expression N/A [85]

KLHL9 GC Low-expression Full-length deletion [9]

KLHL19 CHOL Mutation W554X, C249Y, 543insC Frameshift(codon 181) [8]

CRC DNA hypermethylation T330I, V606M, R234W, Q359X [6, 10, 86]

GBC Mutation, deletion, high-
expression

M1_E441delext-103, D87Y, G379D, S338L, 996delC Frameshift(codon 332) [8, 87]

GC Mutation F280L, Q82H, S233N, C288Y, L281P, G350S [6]

HCC Mutation, low-expression R442_splice, E593X, E542DfsX31, Y396SfsX19, G379D, V271L+, R17Q,
D236Y, L342M, N183S, R336Q

[6, 7, 16]

PC Mutation N222S, G386R, T142M [5, 88]

SBC Mutation Y490C, R320L, R202H [89]

KLHL21 CHOL High-expression N/A [4]

HCC High-expression N/A [15]

KLHL22 CRC Low-expression N/A [19]

HB Mutation M1L [90]

KLHL23 GC Fusion, high-expression PHOSPHO2-KLHL23 [13]

HCC Fusion, low-expression PHOSPHO2-KLHL23 [12]

KLHL29 CRC Fusion, low-expression NR5A2-KLHL29 [14]

KLHL30 HCC Low-expression N/A [17]

KLHL32 PC Low-expression N/A [91]

KLHL34 CRC N/A N/A [92]

KLHL35 HCC DNA hypermethylation N/A [11]

KLHL37 CRC High-expression N/A [20, 93, 94]

KLHL39 CRC N/A N/A [22]

ESCA Low-expression N/A [95]

CHOL cholangiocarcinoma, CRC colorectal cancer, ESCA esophageal cancer, GBC gallbladder cancer, GC gastric cancer, HB hepatoblastoma, HCC hepatocellular
carcinoma, N/A not available, PC pancreatic cancer, READ rectum adenocarcinoma, SBC small bowel carcinoma, STAD stomach adenocarcinoma, N/A not
available.
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the scaffold protein Cullin3. Subsequently, neddylated Cullin3
recruits the E2 enzyme and finally promotes the transfer of
ubiquitin molecules from E2 onto substrates. Additionally, the
BACK domain is a conserved and poorly described region, and
some mutations in this domain are reported to be linked to
gastrointestinal tumors, e.g., gastric cancer, liver cancer, and
cholangiocarcinoma [6, 8].
It is well known that KLHLs perform cellular functions mostly by

ubiquitination, during which they specifically interact with
substrates. The properties of these substrates bestow distinct
roles on KLHLs. If the substrate acts as an oncoprotein, the KLHL
will correspondingly play vital anticancer roles. In contrast, if the
substrate contributes to tumor suppression, the KLHL will possess
pro-cancer functions. Research has identified bona fide substrates
of a few KLHLs, while potential substrates that have been
documented in the protein interactome as interacting with KLHLs
have also been defined, but for such substrates, there is no
experimental evidence. Thus, a summary of the substrates and
pathological dysfunction of KLHLs in gastrointestinal tumors is
imperative to increase the understanding of KLHLs. Here, we
provide a review of representative KLHLs (i.e., KLHL7, KLHL15,
KLHL19, KLHL22, KLHL23, KLHL27, and KLHL36) and their
substrates in gastrointestinal tumors (Fig. 2 and Table 2).

KLHL19
KLHL19, also known as Keap1, is the most thoroughly studied
among the KLHL family members. It interacts with its typical
substrate, Nrf2, forming the KLHL19-Nrf2 pathway to react against
oxidative stress. To date, many proteins have been identified as
substrates, and we focused on some representative proteins,
namely, Nrf2, p62, and IKBKB.
Nrf2, named nuclear factor erythroid 2-related factor, is a key

substrate of KLHL19. Normally, KLHL19 transmits ubiquitin to Nrf2
for degradation. Upon exposure to reactive oxygen species (ROS),
KLHL19 is inhibited by conformational changes, thereby stabilizing
Nrf2 and eventually leading to downstream antioxidant gene
activation. Nrf2 is presumably an oncoprotein that is constitutively
and widely activated for protection in gastrointestinal tumors. In a
mutant K-ras/p53 mouse model, KLHL19 deletion accelerated
cholangiocarcinoma formation alongside Nrf2 activation [23].
Enhanced KLHL19-mediated ubiquitination of Nrf2 triggered
ROS-induced cell death in gastric cancer [24]. Knockdown of
Nrf2 led to sorafenib-induced ferroptotic events, while KLHL19

knockdown contributed to ferroptosis resistance in liver cancer
cells [25]. In addition, some Nrf2 mutations were reported to lead
to aberrant regulation of the KLHL19-Nrf2 pathway to protect
cancer cells [26].
p62, also called SQSTM1, has emerged as a multifunctional

signal hub. p62 interacts with KLHL19 via competitive binding,
causing Nrf2 activation [27]. Autophagy is another essential
process impacted by p62. In a xenograft mouse model, KLHL19
displayed a higher affinity for phosphorylated p62 for subsequent
autophagy-mediated degradation, which significantly facilitated
liver tumor growth [28]. KLHL19 accumulation along with p62
reduction generated an inflammatory and senescent phenotype,
thereby promoting cancer development in an orthotopic pan-
creatic cancer model [29].
IKBKB is another recognized substrate. KLHL19 facilitated IKBKB

ubiquitination to act as a tumor suppressor while IKBKB deficiency
accordingly impeded inflammation-induced intestinal carcinogen-
esis in a mouse model [30, 31]. Consistently, the pro-cancer ability
of IKBKB was demonstrated in a gastric cancer model [32].
Additionally, research revealed that increased KLHL19 and
decreased IKBKB contributed to the improvement of hepatic
steatosis, whereas IKBKB facilitated lipogenesis and hepatocellular
carcinogenesis in vivo [33, 34].

KLHL15
KLHL15 was first identified in silico, and its mRNA is universally
expressed in diverse tissues. KLHL15 is reported to be related to
agenesis of the corpus callosum [35]. Nevertheless, more studies
of KLHL15 to determine its biological mechanisms are underway.
Based on the published literature, CtIP, PPP2R5B, DCX, DCLK1, and
DCLK2 have all been identified as substrates of KLHL15.
CtIP, also known as RBBP8, functions in genome maintenance,

especially in DNA double-strand break repair. Due to its unique
function, CtIP is commonly dysregulated in gastrointestinal
tumors. For example, CtIP was upregulated in HBV-related liver
cancer cells [36]. Knockdown of CtIP slowed the gastric cancer cell
growth rate, while inhibition of its ubiquitination by KLHL15 led to
chemoresistance and cancer development [37, 38]. Additionally,
depletion of CtIP decreased metastasis in an orthotopic colon
cancer model [39]. PPP2R5B is a regulatory subunit of PP2A, but its
role in gastrointestinal tumors remains unknown. DCX, DCLK1, and
DCLK2 were found to be bona fide substrates in a study of
neuronal dendritogenesis [40]. DCX and DCLK2 are both rarely

Fig. 1 The KLHLs structure and the biological process regulated by KLHLs. a Schematic representation of KLHLs structure. KLHLs consist of
BTB/POZ domain, BACK domain and Kelch domain. The BTB/POZ domain is essential for dimerization and contributes to CUL3 interaction. The
Kelch domain is comprised of six identical motif repeats and mediates specific substrates recruitment. The BACK domain is served as a linker
connecting two domains. b The biological process involved in KLHLs regulation. The KLHLs and CUL3 are both dimerized and form CUL3-
KLHL complex to identify substrates. The complex then recruits the E2 enzyme when bound to RBX1 and NEDD8, and jointly transfers
ubiquitin onto substrates for subsequent proteasome-mediated degradation.
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Fig. 2 KLHLs with some properties of drug targets or prognostic biomarkers. All listed KLHLs are high-expressed in tumor tissues
compared to normal tissues. In tumor tissues, KLHLs whose high expression is correlated to low overall survival may match some properties of
drug targets. Meanwhile, KLHLs whose high expression is correlated to high overall survival accordingly possibly fulfill some requirements of
prognostic biomarkers. KLHLs in red match some properties of drug targets. KLHLs in green match some properties of prognostic biomarkers.
CHOL cholangiocarcinoma, ESCA esophageal carcinoma, LIHC liver hepatocellular carcinoma, PAAD pancreatic adenocarcinoma, STAD
stomach adenocarcinoma.
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studied in gastrointestinal tumors. In contrast, increased expres-
sion of DCLK1 has been universally detected in numerous
gastrointestinal tumors, e.g., esophageal, colon, and gastric
cancers, while its ubiquitination regulator, KLHL15, is expressed
at low levels in gastrointestinal tumors [41–43]. A DCLK1-selective
inhibitor exhibited significant antitumor effects against cholan-
giocarcinoma cells in vitro [44]. Recently, numerous studies have
illustrated the relationship between DCLK1 and stemness. DCLK1
is recognized as a marker of cancer stem cells in many
gastrointestinal tumors [45, 46]. For example, in one study, when
injuries and inflammation occurred, DCLK1-positive cells acquired
carcinogenic abilities, inducing oncogenic transformation in the
pancreas [47].

KLHL22
KLHL22 plays significant roles in tumorigenesis, mitosis, and
immune homeostasis. One study revealed that KLHL22 was
downregulated in colorectal cancer and attenuated cell invasion,
migration, and proliferation in vitro [19]. It has been reported that
DEPDC5, PLK1, and PD-1 are substrates of KLHL22, while ADRA1A
and NANOG are potential substrates.
DEPDC5, a crucial and conserved subunit of GATOR1, undergoes

ubiquitin linkage mediated by KLHL22. It has been reported that

DEPDC5 deficiency promotes the growth of gastrointestinal
stromal tumor xenografts in nude mice, while its stabilization
resulting from KLHL22 depletion hinders tumor progression
[48, 49]. Moreover, knockdown of DEPDC5 potentiated ROS
resistance in liver cancer, which was associated with poor
outcomes [50]. PLK1, a regulator of mitosis, is regulated in
localization instead of protein stability [51]. A selective inhibitor of
PLK1 had anticancer effects in esophageal cancer both in vivo and
in vitro [52]. Overexpression of PLK1 hindered liver cell death,
while knockdown reversed this effect [53]. Furthermore, PD-1 is a
novel substrate of KLHL22 and prevents excessive inhibition of
T cells [54]. PD-1 is normally expressed on the surface of T cells,
and inhibition of PD-1 to upregulate the T-cell response and
improve the microenvironment is viewed as a promising strategy
for cancer therapy. Furthermore, several inhibitors targeting PD-1,
such as nivolumab and pembrolizumab, are approved for the
treatment of some gastrointestinal tumors and display good
efficacy [55].
ADRA1A is a G protein-coupled receptor that senses catecho-

lamines. NANOG is considered a biomarker of cancer stem cells
that regulates self-renewal and maintains stemness. In colorectal
cancer tumor-bearing mice, NANOG knockdown led to a
significant decrease in the tumor growth [56]. Similarly, degrada-
tion of NANOG weakened the pancreatic cancer phenotype
in vitro [57].

KLHL23
KLHL23 is an actin-binding protein. A study demonstrated that
KLHL23 hindered the epithelial-mesenchymal transition of liver
cancer cells by impeding actin cytoskeleton remodeling [12].
According to the study, actin was found to be the only definite
substrate, while the other 5 proteins, namely, ANXA1, ANXA7,
BNIP3L, CDKN1A, and TK1, were identified as potential substrates.
ANXA1 and ANXA7 both belong to the annexin superfamily

and can promote or suppress gastrointestinal tumors [58, 59].
BNIP3L, also known as NIX, profoundly impacts mitophagy. In a
xenograft model, BNIP3L-dependent mitophagy upregulated
glycolysis, thereby promoting the cancer stemness phenotype of
liver cancer cells [60]. In addition, BNIP3L deficiency markedly
retarded tumor development and augmented survival in a
pancreatic cancer mouse model [61]. CDKN1A, famously known
as p21, is described as an essential regulator of the cell cycle and
DNA damage repair. CDKN1A plays dual roles in cancer
depending on cell type [62]. Increased expression of CDKN1A
impeded colorectal tumor growth [63]. CDKN1A inhibition was
reported to promote cancer progression in a gastric cancer
mouse model [64]. However, CDKN1A sustained regeneration in
liver injury and promoted hepatocarcinogenesis in vivo and
in vitro [65]. Research on TK1 in gastrointestinal tumors has
rarely been conducted.

KLHL27
KLHL27 was first characterized as a human homolog of mouse
intracisternal a particle-promoted placenta. Moreover, KLHL27 is
highly expressed in breast cancer [66]. The literature shows that
KLHL27 has no substrate except actin, but it has 2 potential
substrates, namely, Hook2 and Lig4.
Hook2 is essential for mitosis and cytokinesis. Given its

increased serum levels, Hook2 hypothetically encodes a tumor
antigen and is regarded as a potential diagnostic biomarker for
esophageal, gastric, and colon cancers [67]. Lig4 is a DNA ligase
that is indispensable in the nonhomologous end-joining repair
pathway. Consistently, Lig4 knockdown decreased radioresistance
in colorectal cancer cells [68].

KLHL36
KLHL36 has rarely been described to date. It has been reported
that KLHL36 expression can be elevated by TNFα [69]. Based on

Table 2. Gastrointestinal tumors associated-KLHLs and their
interactions.

KLHLs Interactions Cancer types References

Substrate Potential
substrate

KLHL7 TUT1 N/A [96]

Fbxl17 N/A [97]

KLHL15 CtIP CC, GC, HCC [36, 37, 39, 98]

PPP2R5B N/A [99]

DCX N/A [40]

DCLK1* CC, CHOL, ESCA,
GC, HCC, PC

[40–42, 44, 45, 47]

DCLK2 N/A [40]

KLHL19 Nrf2* CHOL, CRC, GC,
HCC, PC

[23–26, 100]

p62 CRC, HCC, PC [27–29, 101]

IKBKB CC, GC, HCC [30–33]

KLHL22 DEPDC5 GISTs, HCC [48–50]

PLK1* CC, ESCA, GC,
HCC, PC

[51–53, 102–104]

PD-1* CRC [54]

ADRA1A N/A [105]

NANOG CRC, ESCA,
HCC, PC

[56, 57, 106–108]

KLHL23 Actin N/A [12]

ANXA1 CRC, PC [109–111]

ANXA7 HCC [109, 112]

BNIP3L CRC, HCC, PC [60, 61, 109, 113]

CDKN1A CRC, GC, HCC [63–65, 109]

TK1 N/A [109]

KLHL27 HOOK2 CC, ESCA, GC [67, 114]

LIG4 CRC [68, 115]

KLHL36 TRIM55 HCC [70, 116]

TRIM63 N/A [116]

CC colon cancer, CHOL cholangiocarcinoma, CRC colorectal cancer, ESCA
esophageal cancer, GC gastric cancer, GISTs gastrointestinal stromal tumors,
HCC hepatocellular carcinoma, N/A not available, PC pancreatic cancer, N/A
not available, * substrates have been used as targets in cancer therapy with
inhibitors under clinical investigation.
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the literature, Trim55, and Trim63, also known as Murf2 and Murf1,
respectively, are potential substrates.
Trim55 and Trim63 can function as E3 ligases. High expression

of Trim55 hampered the migration and invasion of liver cancer
cells in vitro [70]. Trim63 is involved in cancer cachexia, but
gastrointestinal-related research is limited.

KLHL7
KLHL7 is mostly reported to be associated with genetic diseases.
TUT1, also known as Star-PAP, has been identified as the only
known substrate to date implicated in U6 snRNA maturation.
Fbxl17 has been identified as a potential substrate that sustains
cancer cell proliferation by ubiquitination. However, the impacts of
these proteins on gastrointestinal tumors remain unexplored.
In summary, accumulating experimental evidence has estab-

lished that KLHLs promote or suppress gastrointestinal tumors in a
substrate-dependent manner. If a substrate is a protumor factor,
the KLHL suppresses tumor development by promoting substrate
degradation and therefore could match properties of a biomarker
of good prognosis. On the other hand, if a substrate is a tumor
suppressor, the KLHL will restrain the antitumor functions of the
substrate and promote tumor growth, suggesting that the KLHL
might conform to the characteristics of a drug target. Therefore,
based on the existing reports and database results, KLHL7,
KLHL15, KLHL23, and KLHL27 could be potential candidates of
drug targets, whereas KLHL19, KLHL22, and KLHL36 meet certain
criteria of prognostic biomarkers.

STRATEGIES TO TARGET KLHLS FOR GASTROINTESTINAL
TUMOR THERAPEUTICS
Targeted therapies are emerging for gastrointestinal tumors and
have shown tangible benefits with fewer side effects and higher
efficacy than chemotherapy and radiotherapy. Targeting KLHLs is
regarded as a feasible and promising approach due to their crucial
roles in gastrointestinal tumors. As adaptors of E3 enzymes, KLHLs
are involved in multiple cellular activities at key points, and their
dysfunction often leads to tumorigenesis. Furthermore, KLHL
inhibition strategies must consider the specificity of individual
KLHLs. Due to the high expression of certain KLHLs in
gastrointestinal tumors and the specificity of interactions between
KLHLs and substrates, targeting KLHLs will not impair intracellular
biological processes in normal tissues. Instead, inhibitors can be
concentrated in tumor cells and specifically repress them,
tremendously minimizing unfavorable side effects. More impor-
tantly, KLHLs are targetable, and several strategies are
proposed here.
Protein‒protein interaction (PPI) inhibitors, whether small

molecules or peptides, have been designed to hinder interactions
by binding to KLHLs. Different KLHLs possess unique Kelch
domains that interact with specific substrates, offering a structural
basis for designing PPI inhibitors with specificity that disrupts the
KLHL-substrate interaction. To date, many studies have reported
small molecule inhibitors. The K67 derivative 5d possessed potent
inhibitory activity and attenuated chemoresistance in liver cancer,
as demonstrated by cell experiments [71]. Another PPI inhibitor,
esculetin, hindered proliferation and induced apoptosis of
pancreatic cancer cells in vitro [72]. Furthermore, peptide
inhibitors, such as cyclic peptide 3, are continually emerging
[73]. Apart from traditional druggable sites, novel sites are
constantly being uncovered to accelerate drug discovery. A study
showed that dimethyl fumarate (DMF) bound to the top region of
the KLHL19 Kelch domain instead of the bottom region, to which
Nrf2 bound [74], facilitating the development of new potent
selective drugs. Targeting the CUL3-KLHL interface is also a
theoretical strategy. According to one study, disruption of the
interaction between a hydrophobic groove of KLHL11 and the
CUL3 N-terminal extension led to sharply decreased affinity [75],

suggesting a promising target for KLHL11 inhibition. A designed
stapled peptide was also reported to efficiently mimic the CUL3-
BTB interaction [76], providing the possibilities for the subsequent
development of inhibitors to disrupt the CUL3-KLHL interaction.
Allosteric inhibitors are commonly defined as inhibitors that

bind to nonactive sites of enzymes, subsequently triggering
conformational changes and ultimately altering enzyme activities.
Taking KLHL19 as an example, Cys151, Cys273, and Cys288 are the
major sensor residues among its 27 cysteines, which all sense ROS
and electrophilic chemicals [77]. In the presence of oxidative
stress, the conformation of KLHL19 changes as a consequence of
modification, subsequently preventing Nrf2 degradation. Inhibi-
tors of cysteines are mainly electrophiles that inactivate KLHL19,
and one of them, DMF, has been approved for the treatment of
relapsing multiple sclerosis. Furthermore, the potency of some
inhibitors has been confirmed to impede gastrointestinal tumor
growth. TCE 31 reduced the formation of preneoplastic foci in the
livers of aflatoxin B1-treated mice [78]. Moreover, sulforaphane
triggered apoptosis of colon cancer cells by G2/M phase arrest
in vitro [79].
Promoting KLHL degradation appears to be a direct and

effective method to hamper KLHL functions. To date, proteolysis-
targeting chimeras (PROTACs) have been developed as a main
tool to target proteins of interest (POIs) for degradation by
hijacking the ubiquitination system. A PROTAC is composed of
three parts. One ligand binds to the POI, another binds to the E3
ligase, and a linker connects the ligands in the middle. PROTACs
should be designed to target unique regions of KLHLs that enable
formation of distinct structures and binding pockets, ensuring
specific binding with KLHLs. A study reported that a PROTAC
targeting KLHL19 successfully triggered the degradation of Tau
[80], suggesting that KLHLs could be targeted by PROTACs; this
result indicated that PROTACs could be designed to inactivate
KLHLs by degradation if one ligand was targeted for KLHLs and
another ligand recruited an E3 ligase. A number of PROTACs have
shown strong effects in gastrointestinal tumors [81]. In addition,
research found that in Drosophila, KLHL19 and KLHL18 could be
self-degraded by ubiquitination in a proteasome-independent
manner [82]. Although the detailed mechanism of KLHL self-
ubiquitination is unclear, it offers potential novel insights into
targeting KLHLs for degradation, which could ultimately be
translated into new drugs.

DISCUSSION
In this review, literature searches and sample analyses were
performed to identify KLHL aberrations in gastrointestinal tumors
and their clinical value. Then, based on their significance, we
focused on several representative KLHLs, i.e., KLHL7, KLHL15,
KLHL19, KLHL22, KLHL23, KLHL27, and KLHL36, and provided a
systematic summary of their substrates and pathological dysfunc-
tion in gastrointestinal tumors to provide novel insights.
Furthermore, possible therapeutic strategies to inhibit aberrant
KLHLs were proposed. Our review highlights a number of
intracellular roles of KLHLs in gastrointestinal tumors and thereby
provides a theoretical basis for KLHL inhibitor design.
Gastrointestinal tumors are highly heterogeneous. Even if the

clinical and pathologic features are similar, the eventual outcomes
are different. Thus, biomarkers of gastrointestinal tumors are of
vital importance and urgently needed. Many studies have
revealed that some KLHLs are related to prognosis in gastro-
intestinal tumors. Moreover, the majority of KLHLs are located in
the cytoplasm and thereby can be easily detected. However, many
KLHLs are analyzed based on immunohistochemistry, which
cannot be easily performed in the clinic. The accuracy, sensitivity,
robustness, etc., of such assays must all be determined and
verified. This review provides potential biomarkers for the
diagnosis of gastrointestinal tumors.

Kelch-like proteins in the gastrointestinal tumors
AB Fu et al.

936

Acta Pharmacologica Sinica (2023) 44:931 – 939



KLHLs are potential ideal therapeutic targets for treating
gastrointestinal tumors for the following reasons: (1) The first is
the effectiveness of intervention targets (KLHLs), and studies have
revealed that biological methods, such as knockdown, of KLHLs
has a therapeutic effect in gastrointestinal tumors. (2) The second
is the targetability of KLHLs. At present, PPI inhibitors, allosteric
inhibitors and PROTACs are all technically well developed, and
substantial evidence shows that some inhibitors derived from the
above strategies show inhibitory effects on KLHLs. (3) The third
reason concerns specificity. The specificity of the KLHL protein
structure (the unique substrate binding pocket) and the specificity
of inhibitor targeting strategies (PPIs and PROTACs) both ensure
the specificity of the targeted inhibition of KLHLs. Apart from
inhibitors of KLHLs with tumor-promoting function, activators of
tumor suppressor KLHLs are another promising option. However,
activators that can rescue KLHL functions have not been studied in
gastrointestinal tumors, and their technical feasibility remains to be
further evaluated and demonstrated. Furthermore, current knowl-
edge about KLHLs in gastrointestinal tumors is still limited. For
example, not all of the substrate proteins mentioned in this review
fit the characteristics of definite ubiquitinated substrates of KLHLs,
and to expand the list of substrates, several interacting proteins
were defined as potential substrates though sufficient experimental
evidence is lacking. Therefore, further research should focus on
substrate identification and biological function clarification. Only
significant progress in target validation can facilitate the develop-
ment of KLHL inhibitors. Furthermore, inhibitor development still
faces some challenges: (1) the moderate efficacy of PPI inhibitors
should be improved, (2) some allosteric inhibitors of KLHLs will need
to be identified without knowledge of the allosteric site, and (3) the
good druggability of PROTAC molecules should be ensured on the
premise of ensuring effectiveness.
In conclusion, we described KLHL aberrations and their practical

significance in gastrointestinal tumors, outlined the biological
functions of representative KLHLs and their substrates under
pathological conditions in gastrointestinal tumors, and finally
offered feasible strategies for therapies. KLHLs are important in
cells because of their extraordinary abilities. KLHLs have substrate-
dependent antitumor and protumor effects in practice. KLHL7,
KLHL15, KLHL23, and KLHL27 could be potential candidates of
drug targets. The availability of many inhibitors makes it possible
to develop drugs targeting KLHLs in gastrointestinal tumors. In
addition, KLHL19, KLHL22, and KLHL36 could be potential targets
for the identification of prognostic biomarkers in gastrointestinal
tumors. This review provides guidelines for a comprehensive
understanding of the biological functions of KLHLs and offers
references for the feasible development of inhibitors targeting
KLHLs in gastrointestinal tumors.
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