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Mass spectrometry imaging: new eyes on natural products for
drug research and development
Jin-jun Hou1,2, Zi-jia Zhang1,2, Wen-yong Wu1,3, Qing-qing He1, Teng-qian Zhang1,2, Ya-wen Liu1,2, Zhao-jun Wang1,2, Lei Gao1,2,
Hua-li Long1,2, Min Lei1,2, Wan-ying Wu1,2 and De-an Guo1,2

Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and
treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal
plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The
heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug
development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free
basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby
allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows
for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a
visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology
in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and
development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI
results. Finally, the future development of MSI in new drug R&D is proposed.
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INTRODUCTION
Natural products (NPs) represent an important source of novel
drugs. Approximately 23.5% of FDA-approved drugs are derived
from NPs or their derivatives, most of which are used for
antibacterial and anticancer therapies [1]. In China, more new
drugs, including drugs based on traditional Chinese medicine
(TCM), have been obtained from NPs [2, 3], such as artemether [4],
huperzine A [5], Salvia miltiorrhiza depside salt [6], etc. To develop
new drugs from NPs, the first step is to extract and screen NPs
from organisms (such as medicinal plants/microorganisms).
However, obtaining or discovering NPs from medicinal plants or
microorganisms is still difficult [7]. Preclinical studies represent
one of the most crucial stages in new drug development;
however, current preclinical drug evaluations largely fail to satisfy
the drug development demand. New preclinical strategies are
being adopted to augment the predictive values of in vivo studies
[8]. The heterogeneous spatial distribution of NPs in medicinal
plants/microorganisms [9] or tumor models [10] can provide
valuable information for drug development (Fig. 1). Many thrilling
molecular imaging technologies have been applied to discover
NPs or facilitate preclinical studies, such as radiographic imaging
like positron emission tomography (PET) and single photon
emission computed tomography (SPECT), magnetic resonance
imaging (MRI), computed tomography (CT), fluorescence imaging,

and Raman imaging [11] (Table 1); however, few molecular
imaging technologies can detect thousands of molecules simulta-
neously on a label-free basis.
Mass spectrometry imaging (MSI) technology can spatially map

the production and distribution of molecules in situ without
labeling, thereby providing a flexible approach for directly
investigating biological samples to identify both known and
unknown molecular features [12, 13]. MSI can provide thousands
of molecular images in plants, animals, and microbes, including
elements, small molecules, lipids, oligosaccharides, peptides, and
native proteins. Over the last two decades, MSI methods have
progressively improved and their ionization methods, sensitivity,
and spatial resolution have diversified; thus, they have been
widely used to identify NPs from medicinal plants/microorganisms
[13–22] and develop novel therapies [22–41]. Such tools provide
new visualization methods for natural product research. In this
mini-review, we will focus on MSI applications to discover NPs
from medicinal plants to determine how NPs are produced and
evaluate NPs in in vivo studies to identify their mechanisms from a
new drug research and development (R&D) perspective (Fig. 1).
Hopefully, data on NPs provided by MSI technology will hopefully
lead to breakthroughs in new drug development. Additionally, the
MSI method is usually composed of four steps: sample prepara-
tion, ionization in situ, mass spectrometry acquisition, and
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molecular imaging analysis. The most crucial steps are sample
preparation [12, 14, 32] and in situ ionization [13], which includes
matrix-assisted laser desorption/ionization (MALDI) [42], deso-
rption electrospray ionization (DESI) [33], and secondary ion mass
spectrometry (SIMS) [43, 44]. Many contributing factors should be
carefully considered to obtain the desired MSI results. The critical
aspects that must be focused on in experiments are also briefly
reviewed.

MSI CAN FACILITATE THE DISCOVERY OF NPS BY VISUALIZING
THEIR HETEROGENEOUS DISTRIBUTION IN MEDICINAL PLANTS
NPs mainly come from secondary metabolites and some primary
metabolites of medicinal plants/microorganisms, and the distribu-
tion of NPs in a medicinal plant is usually heterogeneous. With MSI
technology, it is possible to visualize the primary and secondary

metabolites to study their spatial distribution heterogeneity in
medicinal plants, which is conducive to better discovering novel
NPs for new drug development. NP discovery is mainly performed
to achieve the following three objectives [14, 17, 18]: to optimize
the extraction method of NPs, MSI techniques can be applied to
locate the parts in the medicinal plant where NPs are enriched;
to improve the production of NPs in medicinal plants, MSI
techniques provide a better understanding of the NP biosynthesis
process; and to discover novel NPs, MSI techniques can reveal
hidden or unstable NPs.

MSI helps locate the parts of medicinal plants where NPs are
enriched to optimize the extraction method
The heterogeneous distribution of NPs in medicinal plants is related
to their botanical structures. Traditional analytical techniques, such
as liquid chromatography–mass spectrometry (LC‒MS), can only

Fig. 1 Mass spectrometry imaging can facilitate the discovery of NPs and its preclinical study by visualizing the molecular spatial
heterogeneous spatial distribution in medicinal plant and in vivo.

Table 1. Pros and Cons of MSI with other molecular imaging technologies [11].

Technologies Research object Spatial resolution Analytes Analytes number Sensitivity Analysis time

MSI Tissue slide Middle resolution (1 ~100 μm) Unlabeled Thousands Middle Slow

FI Tissue slide whole body High resolution (subcellular level) Labeled A few High Middle

RSI Tissue slide whole body High resolution (cellular level) Unlabeled /labeled A few Middle Slow

MRI Whole body Low resolution (0.5–2mm) Unlabeled H-atom Low Middle

PET Whole body Low resolution (1–2mm) Radiolabeling A few Low Middle

FI fluorescence imaging, RSI Raman scattering imaging, MRI magnetic resonance imaging, PET positron emission tomography.
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analyze and characterize the NPs from medicinal plants in different
plant parts separately, such as the roots, stems, and leaves. Locating
the distribution of NPs with the corresponding botanical structures
is difficult, which hinders to collection of useful information for
improving processing or extraction methods. MSI technology has
the advantages of being label-free and providing high spatial
resolution images, which enables the analysis of the spatial
distribution of NPs in medicinal plants and colocalization of NPs
with their botanical structures, thereby providing information
improving NP extraction methods. Over the past five years, a
variety of medicinal plants have been studied using MSI techniques,
including Vitex agnus-castus L. (Sui-Hua-Mu-Jing) [45], Ginkgo biloba
(Yin-Xing) leaves [46], Hypericum perforatum (Guan-Ye-Jin-Si-Tao)
roots [47], agarwood (Chen-Xiang) [48], Curcuma longa (Jiang-
Huang) [49], Catharanthus roseus (Chang-Chun-Hua) leaves [50],
Salvia miltiorrhiza Bge (Dan-Shen) [51, 52], Sassafras albidum (Bei-
Mei-Cha-Shu) [53], Paeonia suffruticosa (Mu-Dan), Paeonia lactiflora
(Shao-Yao) [54], Panax notoginseng (San-qi) [55], Clausena lansium
(Lour.) skeels (Huang-pi) [56], Panax ginseng (Ren-Shen) [57], Lycium
barbarum L. (Gou-Qi-Zi) [58], Dallopia multiflora (Thunb.) Harald.
(He-Shou-Wu) [59], Prunus persica (L.) Batsch (Tao-Ren) seeds, Prunus
aymeniaca L. var. ansu Maxim (Ku-Xing-Ren), and Prunus humilis
bunge (Yu-Li-Ren) [60].
For example, paeoniflorin and its derivatives, which are as the

characteristic components in the medicinal plants of the genus
Paeonia, are found in the roots of P. suffruticosa (PS) and P.
lactiflora (PL). However, their spatial distribution in the root is still
unknown. Therefore, two MSI platforms, MALDI fourier transform
ion cyclotron resonance MS (MALDI-FT-ICR-MS) and atmospheric-
pressure-scanning microprobe MALDI-quadrupole-Orbitrap (AP-
SMALDI-Q-Orbitrap), were used to perform a comparative analysis
of the two roots using transverse sections at 35 μm× 35 μm spatial
resolution. In this study, approximately 65 secondary metabolites
were identified by the investigators, and their spatial distribution
had significant differences in the cork, cortex, phloem, and xylem
parts, corresponding to the root sections of PS and PL. Among
them, the abundance of paeoniflorin, one of the primary natural
products in the roots of PS, was approximately two to five times
higher than that in PL, and its distribution in phloem was
significantly higher than that in the xylem of PS (Fig. 2a).
Therefore, when using the roots of PS for therapeutic purposes
as a TCM, its xylem is often removed to increase the relative
content of paeoniflorin. In addition, it was found that the cortex of
PL roots is particularly enriched in certain compounds, including
ebenzoylpaeoniflorin, oxypaeoniflorin, and benzoylpaeoniflorin.
However, when PL is used in the TCM Bai-Shao (Paeoniae Radix
Alba), the cortex needs to be removed, indicating that these
compounds might not contribute much to its therapeutic effects
[54]. A similar approach was adopted to study the roots of Panax
notoginseng. The MALDI-TOF/TOF-MSI platform was adopted, and
the results showed that different parts of Panax notoginseng roots,
such as the rhizome, main roots, and branch roots, presented
differences in the abundance of dencichine, which is the primary
hemostatic compound synthesized in Panax notoginseng [55].
Thus, the results obtained using MSI technology provide useful
information to select the appropriate parts of the medicinal plants
to extract the desired NPs (Fig. 2d).
Amygdalin is a characteristic compound in the seeds of peach,

bitter almond, and Chinese dwarf cherry. Our research group used
the DESI-ion mobility-quadrupole time-of-flight (DESI-IM-QTOF)
MSI platform to analyze the spatial heterogeneity of the three
medicinal seeds at a spatial resolution of 100 μm× 100 μm. The
spatial distribution of nearly 80 primary and secondary metabo-
lites was analyzed, including the unique compound amygdalin,
oligosaccharides, glycerides, and glycerol phospholipids, and most
were more abundant at the edge of the seed kernel than in the
center of the cotyledons. At the same time, lysophosphatides,
which are hydrolyzed glycerol phospholipids that lose a fatty acyl

group, presented higher abundance in the center of the
cotyledons [60] (Fig. 2b). These results provide hints for selecting
suitable extraction methods to obtain NPs. For example, for bitter
almond seeds, care should be taken to avoid soaking the seeds
too long to prevent the hydrolysis of amygdalin around the outer
area of the seeds.

MSI provides insights on the biosynthesis of NPs for improving NP
production from medicinal plants
The production of NPs in medicinal plants is affected by their
biosynthetic pathway and interactions between plants and the
surrounding environment, which could change the efficiency of
producing such compounds. Studies on these two factors could
identify methods of increasing the biosynthesis and production of
particular NPs. MSI can play a better role in exploring both aspects.
For example, phenolic acids and tanshinones are the two main
types of active NPs in Salvia miltiorrhiza Bge (Dan-shen). The DESI-
QTOF MSI platform showed that the salvia phenolic acids were
distributed throughout the above and underground parts of the
plant while the tanshinones were only enriched in the pericardial
tissue of the salvia root (Fig. 2c). Further analysis combined with
nontargeted metabonomics based on LC‒MS technology found
that rosmarinic acid is at the center of the biosynthetic pathway of
salvia phenolic acids, and the biosynthesis of rosmarinic acid
based on danshensu and caffeic acid is the main pathway for
Salvia plants. Tanshinones may be critical secondary metabolites,
and their distribution in the underground roots helps the salvia
plant resist environmental pathogens and damage [52]. MSI
results indicated that increasing caffeic acid and danshensu
should be useful for increasing the production of salvia phenolic
acids. Moreover, pesticides should be reduced to increase the
production of tanshinones. A similar approach was adopted in
another study using the same MSI platform to investigate the
changes in phytohormones in Arabidopsis leaves after mechanical
damage. Phytohormones, including jasmonates, salicylic acid,
abscisic acid, and indole-3-acetic acid [61], were evaluated by MSI
(Fig. 2e), and the results showed that these phytohormones were
significantly increased in the damaged areas of the leaves. Overall,
these studies provided valuable information to increase the
production of NPs in medical plants.

MSI helps reveal hidden or unstable NPs for novel drug
development
MSI may reveal novel NPs that are overlooked using classic LC‒MS
techniques [14] because after pulverizing and extracting, some
NPs may be masked by compounds with high abundance or
change during the sample preparation process. Analyzing tissue
sample sections in situ makes it possible to detect and discover
new compounds due to their natural enrichment in their native
location in the tissue [14]. For example, to discover new antibiotics
from bacterial colonies, the secondary metabolites of a kind of
actinobacteria were mapped with the DESI-MSI platform. This
technology was able to identify an m/z 1299 ion on the glass slide
only and not by using the imprint method. Further observation of
the spatiotemporal distribution of the ion revealed that it was only
synthesized by healthy young cells of the bacterial colony.
Moreover, the novel identified compound was presumed to be
an analog of the antifungal agent lienomycin [62]. In this study,
the MSI technique showed unmatched power in discovering
hidden NPs from the medicinal plant in situ. Our research group
identified a phospholipid, phosphatidylethanolamine (PE) 36:0,
only in the fresh root section of Rehmannia glutinosa (Di-Huang)
(Fig. 2f), further supporting that the MSI technique could help
reveal unstable NPs in fresh medicinal plants. The application of
MSI technology for the above three objectives represents intuitive
analysis approaches for discovering NPs from medicinal plants,
increasing NP production from medicinal plants, and revealing
novel trace NPs in unique samples.
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Fig. 2 Application of mass spectrometry imaging in discovery of natural products from medicinal plant /microorganisms. a MALDI-FT-ICR
and AP-SMALDI-Q-Orbitrap MSI spatial distribution of secondary metabolites in the roots of P. suffruticosa (PS) and P. lactiflora (PL) [54], with
permission from John Wiley & Sons. b DESI-IM-QTOF MSI spatial distribution of lipids in peach seed, bitter almond seed, and Chinese dwarf
cherry seed [60], with permission from Elsevier. c DESI-QTOF MSI spatial distribution of secondary metabolites in Salvia miltiorrhiza Bge [52],
with permission from Elsevier. d MALDI-TOF/TOF MSI spatial distribution of secondary metabolites in Panax notoginseng [55], under the terms
of Creative Commons BY-NC-ND license. e DESI-QTOF MSI spatial distribution of phytohormones in Arabidopsis leaves after mechanical
damage [61], with permission from Royal Society of Chemistry. f DESI-MSI spatial distribution of secondary metabolites in Rehmannia glutinosa
roots (unpublished).
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MSI CAN FACILITATE DRUG R&D BY VISUALIZING THE IN VIVO
HETEROGENEOUS NP SPATIAL DISTRIBUTION
After bioactive NPs are obtained from medicinal plants/micro-
organisms, the MSI technique can be applied to promote
preclinical studies based on the following three aspects [33]. First,
in ADME (absorption, distribution, metabolism and excretion) and
pharmacokinetic-pharmacodynamic (PK-PD) studies, MSI can
provide the direct spatial distribution of compounds to facilitate
more intuitive analyses of NPs and their ADME properties.
Meanwhile, the spatial correlation between NPs and in situ
endogenous pharmacodynamic biomarkers can be established.
Second, in efficacy and safety evaluation and prediction studies,
MSI technology enhances the accuracy and predictability of NP
efficacy and toxicity analyses. Third, MSI can enhance the
rationality of chemical modifications, formulation optimization,
and nanomaterial selection for NP drug and preparation design.

MSI can improve the intuitiveness of ADME analysis and promote
the spatiotemporal heterogeneity of drug PK-PD properties
In drug development, determining the drug’s in vivo ADME is
crucial to determining its drugability. Various molecular imaging
techniques, including radiolabeling, magnetic resonance imaging,
fluorescence imaging, and Raman imaging, have been used to
study the tissue distribution of drugs [11, 30]. However, the MSI
technique has unparallel advantages in terms of retaining the
spatial resolution and chemical features of NPs on a label-free
basis [37].
First, the MSI technique can intuitively provide spatial hetero-

geneity information about chemicals without labeling. It has been
used to study the distribution heterogeneity for certain NPs, such
as YZG330/YZG331 [63], tetrandrine [64], paclitaxel [65], geis-
soschizine methyl ether [66], scutellarin [67], and Uncaria
tetracyclic indole alkaloids [68]. Since mass spectrometry results
are susceptible to matrix effects, imaging data sometimes cannot
directly reflect the actual in vivo distribution and concentration of
NP molecules. To reflect the actual concentration of molecules
in vivo, the quantitative spatial distribution of drugs or
compounds must be realized through correction approaches
[32], such as internal standard correction. At present, the
quantitative application of MSI using correction approaches has
been demonstrated to be well correlated and sometimes even
comparable to the classic LC‒MS technique, which can objectively
reflect the distribution levels of drugs in tissues [32, 65, 69–81]. For
example, using the quantitative DESI-QTOF MSI platform, our
research group systematically studied the spatial distribution of
seven characteristic tetracyclic monoterpene indole alkaloids in rat
brain tissues. These indole alkaloids are considered bioactive
compounds from Uncaria stems and hooks and commonly used in
treating febrile seizures in TCM. The quantitative distribution was
visualized, and the results showed that the seven tetracyclic
monoterpene indole alkaloids have a significantly higher distribu-
tion in some circumventricular organs (CVOs), such as the pineal
gland, area postrema (AP), and subcommissural organ (SCO)
(Fig. 3a). Uncaria indole alkaloids were also highly distributed in
the cerebral cortex, cerebellum, and hippocampal formation but
showed a limited distribution in the pons, medulla oblongata, etc.
Among them, the distribution of the three tetracyclic mono-
terpene indole alkaloids with smaller molecular polarity is
significantly higher than that of the four tetracyclic monoterpenes
oxidize indole alkaloids with greater polarity [68].
Second, MSI can intuitively display the spatial processes of drug

absorption, which cannot be achieved by traditional analytical
techniques. The dermal and intestinal absorption of drugs is the
main factor for studying in vivo drug absorption. With the
assistance of MSI technologies, the depth and extent of drugs
absorbed via the dermis [30, 70, 79, 82–86] and intestines [76, 87]
can be intuitively visualized and analyzed. For example, the
MALDI-FT-ICR MSI platform showed that after focal administration

of tofacitinib in the intestine, its local concentration can be
intuitively characterized by the gradual decline from the intestinal
lumen to the proximal colonic muscle layer over time (Fig. 3b).
Moreover, common saline flushing could not completely remove
the drug from the lumen, which indicates that the traditional LC‒
MS method may overestimate the drug concentrations when
analyzing intestinal tissue homogenates [76]. For the study of the
dermal penetration property of compounds, the absorption
kinetics process can be visualized in the initial few hours after
topical bleomycin administration using the MALD-Q-Orbitrap
imaging platform [86].
Third, MSI technology is conducive to evaluating the absorption

characteristics of drugs in various compartments of the blood‒
brain barrier (BBB). The BBB has spatial heterogeneity in drug
absorption capability. Using traditional analytical methods, only a
limited number of brain regions can be divided and measured.
MSI technology can achieve the fine distribution analysis of drugs
in all brain regions simultaneously, thus leading to a better
understanding of the effects of BBB characteristics on drug
transport, including active transport, passive diffusion, and active
efflux [75, 88]. In a neuro-PK study combined with MSI (Fig. 3c), the
unloaded brain slices and those with saturated adsorption at
constant blood concentrations in vitro were compared to explore
the differences in the adsorption rate among various brain
regions. By integrating the MALDI-FT-ICR MSI platform and
quantitative imaging techniques, the blood‒brain barrier absorp-
tion characteristics of olanzapine in different brain regions were
achieved at a spatial resolution of 20 μm. The results showed that
there was significant heterogeneity in BBB absorption among
different brain regions. For example, BBB active efflux was most
pronounced in the lateral septum region, where the striatum was
characterized by passive diffusion and the anterior commissure
region was characterized by active transport [75] (Fig. 3c).
Fourth, MSI technology can intuitively provide spatial distribu-

tion information for multiple metabolites simultaneously. For
example, a study on gemcitabine, a prodrug to treat pancreatic
cancer, was performed using the DESI-Q-Orbitrap and MALDI-FT-
ICR platforms to simultaneously characterize the heterogeneous
distribution of the original drug and its four metabolites in the
tumor tissues (Fig. 3d). MSI analyses showed that the three
metabolites of gemcitabine were mainly distributed in the areas
where the tumor cells were highly active and showed a high
abundance of AMP, ADP, and ATP. In contrast, the highest
distribution of its original form and the inactive metabolite were
different from the active metabolites. These results obtained using
the MSI technique suggested that the production of active
gemcitabine metabolites has a certain correlation with the activity
of tumor cells [89].
Fifth, the MSI technique can simultaneously provide information

about the spatial correlation of drug-induced pharmacodynamic
biomarkers. The label-free feature of MSI makes it possible to
visualize not only the spatial distribution characteristics of NPs and
their metabolites with high spatial resolution but also the
spatiotemporal changes in the corresponding endogenous
pharmacodynamic biomarkers in vivo after drug intervention.
For example, YGZ331/330 are a pair of epimer derivatives of N6-(4-
hydroxybenzyl) adenine riboside (NHBA), a sedative and sleep-
promoting compound isolated from Gastrodia elata. Using the
AFADESI-Q-Orbitrap MSI platform, the in vivo distribution of
YGZ331/330 was investigated at a spatial resolution of 400 μm.
The MSI study revealed that the pair of epimers was mainly
distributed in the stomach after oral administration. The main
difference between the two epimers was that the metabolite of
YGZ331 was rarely distributed in the stomach while the
metabolite of YGZ330 had a significant presence in the gastric
area. Further analysis was performed to analyze the spatial
distribution of γ-aminobutyric acid (GABA) as the pharmacody-
namic biomarker (Fig. 3e). Moreover, GABA in the YGZ330-treated
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Fig. 3 Application of mass spectrometry imaging in ADME and PK-PD studies of drug development. a DESI-QTOF MSI spatial distribution
of seven tetracyclic monoterpene indole alkaloids isolated from Uncaria stem with Hooks in mouse brain [68], with permission from Springer
Nature. b MALDI-FT-ICR MSI spatial distribution of intestinal absorption of tofacitinib [76], with permission from American Chemical Society.
c MALDI-FT-ICR MSI were adopted for evaluation of drug transport across BBB [75], under the terms of the Creative Commons CC BY license.
d DESI-Q-Orbitrap and MALDI-FT-ICR MSI spatial distribution of gemcitabine and its four metabolites in pancreatic cancer [90], with
permission from American Chemical Society. e AFADESI-Q-Orbitrap MSI spatial distribution of YGZ331/330 with promoting sleep activity in the
rat [63], under the Creative Commons CC-BY-NC-ND license.
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group had the most significant increase in rat brain and gastric
areas, which was consistent with the better efficacy of YGZ330 in
terms of sedation and sleep promotion. These results suggest that
differences in drug and their metabolite distribution may be
related to endogenous pharmacodynamic biomarkers [63], which
can be readily visualized with the assistance of MSI techniques.

MSI can promote the accuracy and predictability of NP efficacy
and toxicity analysis
Uneven distribution of drugs can lead to “therapeutic hetero-
geneity” [29], particularly in the brain [68, 75, 88, 90–93], tumor
tissues [89–91, 94–96], necrotic foci [97–100], gastrointestinal
tracts [76], lymph nodes [101], etc. When the drug distribution
heterogeneity is visualized in the target tissues at a high spatial
resolution, the drug efficacy and toxicity assessment accuracy will
be significantly improved, which may promote the ability to
predict the potential efficacy or toxicity of drugs in their target
organs. Thus, the concept of “precision pharmacology” has been
developed and proposed by investigators [27].
First, analyzing the spatial heterogeneity of the drug distribu-

tion in target organs can improve our understanding of drug
efficacy. For example, necrotic foci usually develop in tuberculosis
tissues, and a small number of tuberculosis bacilli are wrapped
inside the necrotic foci. With the MALDI-LTQ XL-Orbitrap imaging
platform, five clinical anti-tuberculosis drugs were investigated.
The results showed that only rifampicin was enriched in the lung
necrotic foci after continuous administration, which effectively
inhibited the tuberculosis bacteria inside the necrotic foci (Fig. 4a).
This result indicated that rifampicin has long-term efficacy on
tuberculosis; however, isoniazid, pyrazinamide, and moxifloxacin
do not present this feature in treating tuberculosis [97]. The
subsequent investigation applied the AP-MALDI-Q-Orbitrap MSI
platform with a higher spatial resolution to further investigate the
necrotic foci containing the tuberculosis bacteria. At a spatial
resolution of 5 μm, it was confirmed that clofazimine could
penetrate the tuberculosis granuloma. By combining this platform
with the immunohistochemistry (IHC) technique, the colocaliza-
tion of clofazimine with the penetrated macrophages was
revealed. These results help better understand the pharmacody-
namic mechanism of the drug for tuberculosis treatment [100].
Second, the drugs will lose their efficacy if they fail to achieve

the ideal distribution at the target tissues or organs. For example,
the distributions of antiretroviral drugs in the ileum of three
species (mouse, macaque, and human) were explored using the
infrared (IR)-MALDI-Q-Orbitrap platform. In combination with IHC
and in situ hybridization using RNA viruses as probes, it was found
that up to 27% of the cells infected by the viruses in ileum tissue
were not exposed to antiretroviral drugs (Fig. 4b), which led to a
small number of T cells remaining susceptible to viral infection and
low-grade viral replication during antiretroviral suppression [101].
Third, the organs where the drug is distributed and enriched are

closely related to its efficacy or toxicity. With further development
of the MSI technique and improvements in the spatial resolution
and sensitivity of the instruments, it is possible to predict the
potential efficacy or toxicity of NPs based on the results of MSI
analysis. For example, a previously mentioned study that explored
the brain distribution of Uncaria indole alkaloids showed that their
high distribution in CVOs provides a novel research direction to
further explore their therapeutic potential in treating central
nervous system (CNS) diseases. For toxicity prediction, the DESI-
QTOF MSI platform showed that a chlorine-containing metabolite
of diazepam was concentrated predominantly in the spinal cord of
female zebrafish, suggesting that it may have sites of toxicity in
the nervous system and exhibit sex differences [102]. Using the
MLADI-TOF MSI platform, the spatial distribution of the antitumor
drug MERTK (MER Proto-Oncogene, tyrosine kinase inhibitor) was
explored at a spatial resolution of 10 μm. The results showed that
the MERTK inhibitor was locally enriched in the retinal pigmented

epithelium and the site of retinopathy (Fig. 4c), suggesting that
such drugs may have ocular safety risks. By revealing the
correlation between the spatial distribution of the MERTK inhibitor
and its potential ocular toxicity, the MSI technique is unmatched
in its ability to predict drug toxicity in targeted organs [103].

MSI can demonstrate the rationality of chemical modifications,
dosage form design, and nanomaterial selection for NPs during
drug development
The targeting properties can be effectively improved through
chemical modification, formulation optimization, or suitable
nanomaterial selection for carriers. Based on its ability to display
the compounds’ spatial distribution, MSI can intuitively visualize
the distribution of drugs after modifying their targeting properties,
thus providing direct and unparallel evidence and advantages for
drug-targeting optimization studies. For example, to compare the
in vivo distribution of paclitaxel injection, paclitaxel liposomes, and
paclitaxel prodrugs, the air flow-assisted desorption electrospray
ionization (AFADESI) Q-Orbitrap MSI instrument was used in this
study to analyze the drug distributions in whole-body mouse
sections at a spatial resolution of 350 μm. The results showed that
paclitaxel injection and liposomes were widely distributed in
multiple organs in the entire body after administration, with
paclitaxel liposomes retained in vivo for a longer time compared
with the paclitaxel injection. In comparison, the paclitaxel prodrug
had good enrichment in targeted tumor tissues and was rarely
detected in other organs or tissues [65] (Fig. 4d). Another exciting
application of MSI techniques is in nanomedicine design. Tumor
tissues have a lower pH in their tumor microenvironment when the
c-Myc oncogene is highly expressed, while those with negative
c-Myc expression have a relatively higher pH. pH-sensitive
nanomedicines have been designed to target unique distributions
based on pH differences in tumor tissues, and fast releasing (FR)
and slow releasing (SR) nanomedicines have been designed based
on the pH environment. The MALDI-TOF MSI platform at a spatial
resolution of 50 μm was used to visualized the higher release and
distribution of FR nanomedicines, which are formed by lipid chains,
in low-pH tumor tissues in human subcutaneous tongue cancer
with high c-Myc expression. In contrast, SR nanomedicines had a
lower distribution in the same low-pH tumor environment (Fig. 4e).
When evaluating these nanomedicines in human pancreatic cancer
tumor tissues with low c-Myc expression, SR nanomedicines
formed by aromatic ring chains presented a higher distribution
in low c-Myc tumors than the FR nanomedicines. In the same
study, the targeting properties of FR and SR nanomedicines were
also visualized using the MALDI-TOF technique at the organ level.
The results showed that FR and SR nanomedicines have a lower
distribution in the liver and kidneys than in tumor tissues,
indicating that the nanomedicines were successfully designed
and modified to achieve a good targeting capability at the c-Myc
expression level in tumor tissues [96].
In addition, nanomaterials play an increasingly important role in

developing drug formulations. Their in vivo distribution properties
have been highlighted and received increasing recognition. One
exceptional property of nanomaterials is that they have innate
characteristic MS signals under laser-based MSI platforms, such as
MALDI, making it straightforward to track and analyze their spatial
and temporal distributions [29, 104].
Currently, most MSI studies on the in vivo distribution of NPs

have focused on a single compound, while few studies have
analyzed the distribution of natural extracts in vivo using MSI
techniques [105]. The main reason is the existence of isomers in
the plant extracts. Due to the lack of a separation unit in the MSI
instrument, it is challenging to distinguish ions of the same mass
and identify the parent compounds from which the ions fragment.
At the same time, many low-abundance compounds are present
in the plant extract, which also increases the difficulty of
deciphering the MSI data and their biological significance.
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Fig. 4 Application of mass spectrometry imaging in accuracy and predictability of drugs efficacy & toxicity analysis and chemical
modification & dosage forms design. a MALDI-LTQ XL-Orbitrap MSI spatial distribution of anti-tuberculosis drugs in the lung necrotic foci of
human [98], with permission from Springer Nature. b IR-MALDI-Q-Orbitrap MSI spatial distribution of antiretroviral drugs in the ileum of
macaques with SHIV [102], under the terms of the Creative Commons CC BY license. c MLADI-TOF MSI spatial distribution of MERTK inhibitor
enriched in the retinal pigmented epithelium of mouse [104], under the terms of the Creative Commons CC BY license. d AFADESI-Q-Orbitrap
MSI spatial distribution of paclitaxel lipidsomes and its pro-drug in the xenograft tumor mouse model [65], under the terms of the Creative
Commons CC BY license. e MALDI-TOF MSI spatial distribution of two different release rate nanomedicines (slow and fast in different pH) in
two tumors with different expression of c-Myc [97], with permission from American Chemical Society.

MS imaging facilitates new drug R&D from natural products
JJ Hou et al.

3103

Acta Pharmacologica Sinica (2022) 43:3096 – 3111



Considering the above problems, we propose four strategies that
may improve the workflow of NP drug R&D. First, adopting MSI
instruments coupled with high-resolution ion mobility features
may be advantageous when studying the in vivo chemical
distribution of extracts. The second is to develop in situ ion
sources that are based on droplet microextraction combined with
online nano separation, although one possible downside is that
this strategy will significantly increase the complexity and analysis
time of MSI data processing. The third strategy is to combine the
classic LC‒MS and MSI techniques to analyze small tissue samples
on the square micron scale, where the compounds are also
enriched. Finally, an indirect approach may be adopted by
analyzing endogenous metabolites with the MSI technique, which
may reflect the in vivo distribution and pharmacological
characteristics of the plant extracts, especially for TCM [106].

CONSIDERATIONS FOR PERFORMING BETTER MSI STUDIES
The MSI technique provides a novel tool with a spatial perspective
for new drug R&D from NPs. The following issues should be
seriously considered or carefully optimized to obtain the desired
MSI results.

Investigation modes influence the selection and optimization
strategies of MSI
As an omics technique, investigation modes of MSI could be
divided into a discovery-driven mode (similar to the untargeted
approach) and validation–driven mode (similar to the targeted
approach). In the discovery-driven mode, proposing a novel
scientific hypothesis is the primary goal, which is attained by
exploring the unknown spatial distribution of elements [107],
small molecules [92], lipids [60], peptides [108], proteins [109] or
N-glycans [110]. Then, other analytical or biological techniques will
be applied in the following study to validate the hypothesis and
elucidate the underlying mechanisms. For this mode, investigators
should understand that the visualized results might be incon-
sistent with the truth, which means that different sample
preparations, ion sources, and mass spectrometry instruments
could affect the spatial distribution characteristics and species of
molecular components. For the validation–driven mode, display-
ing the spatial distribution of target analytes is the primary
experimental purpose. The MSI technique serves as a tool to
directly visualize the previously unseen spatial distribution of
target analytes and provide useful information for analyte
research in combination with other analytical methods. Under
this mode, the method of sample preparation, the parameters of
the ion source, and the choice of mass spectrometry instrument
should be reasonably selected or optimized based on the
properties of the target analytes so that the best imaging
sensitivity and spatial resolution can be obtained. In addition,
the matrix effect in situ should also be considered when
performing quantitative distribution analyses [32].

Sample preparation is a crucial step in the MSI workflow
The importance of sample handling has been repeatedly
mentioned in several keynote MSI reviews [14, 18, 24, 111], some
of which are specifically dedicated to this stage in the MSI
workflow. Generally, the following five aspects should be
considered during the MSI sample preparation stage: the selection
of sample tissue types, tissue section acquisition methods, section
processing methods, the choice of derivatization methods (if
needed) [112, 113], and matrix selection and spray methods when
using certain ion sources that require matrix assistance [112, 114].

Selection of sample tissue type. As mentioned above, various
types of biological samples have been applied for MSI data
acquisition, including plant tissues, snap-frozen animal and clinical
tissues, and formalin-fixed paraffin-embedded (FFPE) tissues that

are commonly seen in clinical studies. Different sample types
require different preparation methods and sometimes even novel
methods to accommodate the particular properties of the sample
[60]. The MSI technique can use fresh [52] or dry plant specimens
[115], although the dried plant sample would be much more
challenging [115]. Animal and clinical frozen tissues represent
typical sample types that are applied and analyzed using the MSI
technique. The tissue sample size can be small at the square
millimeter level, such as the mouse retina [116], or on a relatively
large scale, such as whole-body sections of adult rats [63]. In
addition, the fresh bone tissues of mice could also be analyzed by
MSI [117]. FFPE is the most abundant sample type preserved for
clinical study and diagnosis [118]. Although some chemical
components are denatured and lost during the treatment process,
such as predehydration, the retained analytes can still provide
valuable information regarding their spatial distribution to
understand the underlying pathological mechanisms. The method
of sample preparation for FFPE is much different from that of
other samples [118].

Tissue section acquisition methods. The section preparation of
plant samples is the most challenging. Due to the variety of plant
sample types, the imprinting method is often used for fresh
flowers and leaves in addition to the typical frozen sections. A
more detailed comparison and summary of plant sample
preparation methods can be found in a previous review [14]. Of
note, when the plant samples are rich in oil [60], wax [52], starch,
moisture, and fibers, the difficulty of preparing sample sections
will be greatly increased, and the preparation step may even
become the limiting step during MSI studies. Our laboratory
proposed the use of a commercialized adhesive marketed for
everyday household use to fix the oil-rich seed kernel and nut slice
sections onto glass slides, which improved the spray pressure
tolerance of the DESI ion source and successfully achieved spatial
lipidomic analysis of these seed tissues [60]. One study on the
whole plant developed a bidimensional (2D)-unidimensional (1D)-
2D imprinting strategy with a string plane to overcome the limits
of imaging large fresh plant samples [119]. For animal and clinical
frozen tissue samples, frozen sections are generally obtained using
a cryostat at a thickness of approximately 8–15 μm. Studies using
FFPE tissue sections have reported that thin slices (approximately
1 μm) would be beneficial for improving the sensitivity of MSI
detection [118, 120]. For whole-body sections containing bone
tissues, a tungsten steel knife with higher hardness is usually
required with a modified cryostat holder or a specialized
cryomacrotome [121]. Generally, the tissue sections are trans-
ferred to regular glass slides for MSI application. For some special
ion sources, such as MALDI, conductive indium tin oxide (ITO)
slides are needed. Precoating ITO slides with gelatin and
chromium potassium sulfate dodecahydrate would improve the
adherence of FFPE sections, especially when the sections contain
cartilage-bone, teeth, and mouse whole-body sections [122].
Specialized adhesive tapes could be used for mounting large
tissue sections [63]. It is worth mentioning that the optimum
cutting temperature (OCT) polymer, commonly used for frozen
tissue embedding for immunohistochemistry (IHC) and immuno-
fluorescence techniques, will produce a severe degree of ion
suppression, which makes subsequent MSI data acquisition
impossible [14]. Therefore, other embedding reagents, such as
gelatin [123] and 2%~8% carboxymethyl cellulose (CMC) or their
mixture, are recommended as alternative embedding media for
MSI studies [121].

Section processing methods. After tissue sections are prepared,
they are generally kept frozen and stored at ultralow temperature
for long-term storage, and the slides are dried before use. Thus,
the following three aspects can be optimized to obtain better MSI
detection and data acquisition in this step. The first aspect is the
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need to enhance or change the composition on the surface of the
obtained tissue slices through section pretreatment. Except for
SIMS and inductively coupled plasma‒mass spectrometry (ICP‒
MS), whose ion sources are based on laser ablation technology
(LD), the ion sources of the majority of MSI instruments are based
on surface ionization technology [13]. This means that the
components of the tissue surface on the slide would determine
the analytes that the investigators will obtain in the MSI data.
Therefore, with proper surface pretreatments, it is possible to alter
the chemical composition of the tissue surface by removing the
superficial wax or extracting the intracellular components from
the tissue surface. For example, organic solvent treatment can
remove the wax on some plant tissue surfaces [52], and organic
solvent leaching can be applied to remove the paraffin on FFPE
sections [118]. Additionally, using an in situ hydrogel conditioning
method, the sensitivity of chemical components can be enhanced
by as much as 2- to 25-fold in MSI [124]. When analyzing protein
components, surface digestion with trypsin is commonly applied
on the section surface, followed by in situ enzymatic peptide
imaging and identification [125]. For N-glycan analysis,
N-glycosidase F (PNGase F) is typically used for pretreatment to
release the N-glycans bound to proteins for MSI analysis
[126–128]. The second aspect is the need to enhance the accuracy
in mass calibration [129] or quantification by introducing internal
standards on the tissue surface before MSI acquisition
[28, 64, 73, 78]. One study compared three methods of introducing
internal standards onto the sample sections using DESI. The results
showed that spraying the internal standard onto the tissue surface
using specialized spraying equipment resulted in the best
quantitative correction for the biological samples [130]. The third
aspect includes the application of tissue pretreatments for
stabilization and sterility purposes when working with potentially
biohazard samples. Most MSI data acquisition steps take hours to
complete and are performed at room temperature. It should be
taken into consideration that the components on sample surfaces
might change with time. In addition, some clinical samples may
contain potentially infectious pathogens, such as bacteria and
viruses; thus, proper pretreatments are required for pathogen
inactivation or toxicant removal to ensure biosafety throughout
the workflow [100, 131, 132].

Sample derivatization. Sample derivatization has two purposes:
to enhance the ionization efficiency of difficult-to-ionize com-
pounds [108, 133–139] and to increase the differentiation of
isomers, such as lipid isomers with C=C double-bond (DB)

positions [140–145]. For the former purpose, some types of
analytes, such as catecholamines [133], metabolism of sulfur-
containing metabolites and proteins [135], neurotransmitters
containing primary and secondary amines and phenolic hydroxyls
[134, 138], cholesterols [137], and corticosteroids [139], have been
derived with special chemical reagents to increase their ionization
and sensitivity in MSI detection. In addition, identifying double
bond isomerization of phospho- and glycolipids has always been
the focus of spatial lipidomics. Some chemical reagents or
methods, such as benzaldehyde [140] and benzophenone [143]
or ozone-induced dissociation reactions [142], have been used to
differentiate the lipid isomers with C=C double bonds. Several
reviews on the sample derivatization strategies in MSI can be
retrieved [112, 113, 146].

Matrix selection and spraying strategies. For the mainstream ion
source represented by MALDI, a special organic acid must be
introduced on the surface of the section before MALDI-MSI
acquisition. It could take part in the ionization process by
converting laser (UV 337 nm or 355 nm) energy into thermal
energy to achieve molecular ionization of the substances in the
matrix [14]. Therefore, the matrix would influence four aspects of
MALDI-MSI: the analytes of a section should first be extracted into
the matrix or the sensitivity may be too low; the size of the matrix
crystal should be small enough to obtain high spatial resolution;
the purity of the matrix should be high enough to reduce the
background of MSI; and the thickness of the matrix layer on tissue
sections should be as uniform as possible to obtain consistent
responses and signals for MSI. More information related to MALDI
matrices can be found in previous reviews [112, 114, 147]. On the
other hand, the introduction of nanomaterials has led to the
establishment of SALDI-MSI from MALDI-MSI, which is also
covered in previous reviews [148, 149]. Of note, introducing
matrix and derivatization reagents, including pretreatment with
solvents, may cause the displacement of small molecules on the
tissue surface. Therefore, it is necessary to investigate the effects
of these pretreatments, especially for MSI analysis with a high
spatial resolution (< 10 μm) [14].

Ion source selection plays a central role in the MSI workflow
The core component of the MSI instrument is the in situ ion
source. Currently, based on the principle of on-tissue extraction
and ionization, ion sources can be divided into three major
categories (Table 2): laser- (UV or IR), liquid-, and ion cluster-based
ion sources. The laser-based ion source, represented by MALDI, is

Table 2. Overview of ion souses used for MSI analysis [33, 42, 60, 80, 103, 149–158, 163–182].

on Source Pressure Matrix Spatial resolution Molecular range

• Laser based

1. MALDI Vacuum Yes / Nano-materials >5 μm Small, large molecular

2. MALDI 2 Vacuum Yes / Nano-materials >1 μm Small, large molecular

3. AP-MALDI AP Yes / Nano-materials >1 μm Preferred small molecular

4. SALDI Vacuum Nano-materials >5 μm Preferred small molecular

5. IR-MALDESI AP No / Yes >50 μm Preferred small molecular

• Liquid based

6. DESI AP No >50 μm Preferred small molecular

7. AFA-DESI AP No >100 μm Preferred small molecular

8. nano-DESI AP No >10 μm Preferred small molecular

9. LESA AP No >400 μm Small, large molecular

• Ion cluster based

10. SIMS High vacuum No >50 nm Preferred element, small molecular

11. nano-SIMS High vacuum No >50 nm Preferred element, small molecular
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the most popular MSI instrument source at present, and more
than 50% of MSI research uses MALDI, which is an MSI method
with the broadest coverage of analytes and the most complicated
analytical parameters [42]. Other MSIs with laser-based ion sources
include MALDI2 [150–152], AP-MALDI [80, 153, 154], SALDI
[148, 149, 155–157], and IR-MALDESI [158–161]. The liquid-based
ion sources of MSIs are represented by DESI [33, 60, 102], which is
also a rapidly expanding technique in terms of applications, and it
presents the advantages of being matrix-free and having a simple
analysis workflow. Other similar MSI techniques with liquid-based
ion sources are AFADESI [162–165], nano-DESI [166–170], and
liquid extraction surface analysis (LESA) [171–176]. The ion cluster-
based ion sources are represented by SIMS [177–179] and nano-
SIMS [180, 181], which higher equipment and working environ-
ment requirements than the other ion sources. The sample
analysis is performed under high vacuum conditions, and the
instruments are relatively large and expensive. However, SIMS
provides unparallel advantages in achieving single-cell or even
subcellular resolution levels [177, 179, 181]. The above ion sources
hold differences and preferences in the range of analytical
molecules, spatial resolution, and sensitivity (Table 2). Therefore,
the choice should be made based on the hypothesis and purpose
of the study.

Impact of mass spectrometry instruments on MSI analysis cannot
be ignored
Currently, common MS instruments coupled with in situ ion
sources include QQQ [182], TOF [133, 183] or TOF-TOF MS
[184–186], Q-TOF MS [52, 60], IT-TOF MS [187], Orbitrap series MS
[47, 150], FT-ICR MS [76, 188, 189], and ICP‒MS [190, 191]. ICP MS is
mainly used for element analysis, while other mass spectrometry
instruments significantly differ in the mass analysis range,
sensitivity, and mass resolution. For example, TOF-TOF MS
performs well when analyzing molecules with high molecular
weight (10 kDa and more). Q-TOF MS has certain mass
discrimination, which is significantly affected by its parameter
settings in the lower and higher molecular weight ranges.
However, Q-TOF MS has good performance in obtaining MS/MS
ion fragments. Orbitrap and FT-ICR have significant advantages in
acquiring ultrahigh-resolution data, which is conducive to resol-
ving complex MS signals. Their resolution can reach greater than
1× 105~3 × 105 (400 Da) [188, 192], even above 1 × 106 [189],
whereas the common resolution of high-resolution MS is only
1× 104~3 × 104 (400 Da). Additionally, it has better sensitivity for
analyzing small molecules. The relative disadvantage of FT-ICR is
the high cost and longer analysis time in the ultrahigh
resolution mode.

Ion mobility provides an isolation dimension to MSI
The principle of MSI is that the analytes are directly ionized and
the ions enter the MS unit of the instrument without chromato-
graphic separation, which significantly increases the complexity of
MS analysis. Meanwhile, as the spatial resolution increases, the
area covered by a single pixel approaches 100 μm2 on the
biological samples, which is consistent with the single-cell level,
thus posing a significant challenge to the analytical sensitivity. Ion
mobility analysis can be achieved in an MS instrument [193]. After
the ions enter the MS detector, ion separation at the millisecond
level based on molecular shape, which is called collision cross-
section (CCS), is performed before entering the mass analyzer
(TOF or Orbitrap) at the microsecond level based on the m/z value
[194]. There is a certain degree of orthogonality between the CCS
and m/z of the ions. Therefore, the application of ion mobility in
MSIs could increase the possibility of differentiating isomers with
the same m/z values. Meanwhile, the CCS value is unique to ions
and can be used to identify ions based on the m/z and MS/MS
spectra. Several databases have supported m/z values in
combination with CCS values for joint ion retrieval and

identification, such as The Human Metabolome Database (HMDB,
https://hmdb.ca/), AllCCS (http://allccs.zhulab.cn/), and LIPID MAPS
(https://lipidmaps.org/). It should be mentioned that the in situ
MS/MS spectrum is difficult to obtain for MSI experiments due to
the low sensitivity and complicated ion signals, especially for ions
with low abundance in MSI data. Therefore, CCS values could
enhance the identification efficiency of low-abundance ions [60].
In addition, ion mobility analysis is coupled with an ion
enrichment process; thus, it increases the ion detection sensitivity
by a factor of 2~10 [195]. Many MSI studies have adopted ion
mobility [60, 93, 151, 168, 196–198]. One problem is that the
resolution of ion mobility can only reach 40~60 (CCS/ΔCCS) [193].
Currently, the application of cyclic ion mobility technology has
greatly improved the separation performance of ion mobility, for
which the resolution could reach 400 (CCS/ΔCCS) [199] and would
provide significantly improved performance and application for
MSI technology.

Balance should be maintained among spatial resolution, mass
resolution, sensitivity, and data acquisition time
For a 1 cm × 1 cm tissue section, the MSI data acquisition time is
approximately 2.8 h when the spatial resolution is set at 100 μm×
100 μm (a total of 104 pixels are obtained in that area) and the
mass spectrum acquisition speed per pixel is set at one second. If
the spatial resolution is further reduced to 10 μm × 10 μm at the
single-cell level, 106 pixels will be collected in that area and the
data acquisition time will reach 278 h, which is impossible to
achieve. At this point, it is necessary to sacrifice MS resolution and
sensitivity to achieve a higher acquisition speed. By reducing the
acquisition time to 0.1 s, the overall data acquisition time can be
reduced to 28 h. Increasing the acquisition time of individual
pixels is conducive to enhancing the MSI sensitivity but also
significantly prolongs the data acquisition time. A longer data
acquisition time is expected for MSI instruments with higher MS
resolution or high-performance ion mobility separation. High
spatial resolution is conducive to improving the MSI image quality
but also leads to an exponential increase in data capacity and
acquisition time. Therefore, for different analytical purposes, such
as large samples or studies requiring single-cell resolution, a
reasonable spatial resolution should be chosen to balance mass
spectrometry resolution, sensitivity, and acquisition time. The four
factors (spatial resolution, mass resolution, sensitivity, and data
acquisition time) are also the limitations of MSI which are still
difficult to meet the needs of biologists. Further method
development or even creative instrument should be proposed
constantly. Especially for spatial resolution and sensitivity, it is
preferred for single-cell and even subcellular levels spatial
resolution with high sensitivity.

CONCLUSIONS AND PERSPECTIVE
MSI, as a fascinating visualization and analytical technique, has a
unique role in new drug research and development from NPs. It
can discover novel chemical structures of NPs in situ, explore new
targeting organs of a candidate drug, guide the preparation
design of drugs, and reveal the new mechanisms of a drug by
providing high spatial resolution in situ information about
thousands of molecules on a label-free basis. With the develop-
ment of MSI technology, exciting and innovative applications in
NP R&D are expected in the following four emerging aspects. First,
the advances and improvements in spatial resolution and data
acquisition speed would increase the likelihood of displaying and
analyzing molecules at the single-cell and even subcellular levels.
Thus, integrating MSI with existing cellular and molecular imaging
techniques will provide more powerful methods of discovering
and interpreting drug mechanisms. Second, the development of
other spatial omics technologies, especially with the improvement
of spatial transcriptomics at the single-cell resolution, will provide
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a more robust analytical approach for studying spatiotemporal
changes in drug efficacy. Third, further integration with ultrahigh
resolution MSI and metabolic flux techniques will assist in better
understanding the dynamic metabolic changes in the spatial
dimensions of the tumor or disease microenvironment. Fourth, the
establishment of public repositories and databases for published
and sharable MSI data and the application of data mining tools/
software will grant easy access to MSI techniques and promote the
broader application of MSI.
In summary, the advancement of MSI in terms of the above four

aspects will lead to the development of a powerful spatiotemporal
analysis tool for better new drug R&D from NPs. However, as an
invasive analytical technique, MSI must be performed using
biological tissue sections, thus preventing it from revealing the
dynamic distribution of molecules in living organisms in real time.
The goal to achieving the real-time visualization and analysis of all
molecules inside plants and animals represents a dream to be
fulfilled and the primary driving force underlying technological
advancement.
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