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TRPV4 channel is involved in HSV-2 infection in human
vaginal epithelial cells through triggering Ca2+ oscillation
Ping Jiang1, Song-shan Li1, Xin-feng Xu1, Chan Yang1, Chen Cheng1, Jin-shen Wang1, Ping-zheng Zhou1 and Shu-wen Liu1,2

Herpes simplex virus (HSV) infection induces a rapid and transient increase in intracellular calcium concentration ([Ca2+]i), which
plays a critical role in facilitating viral entry. T-type calcium channel blockers and EGTA, a chelate of extracellular Ca2+, suppress
HSV-2 infection. But the cellular mechanisms mediating HSV infection-activated Ca2+ signaling have not been completely defined.
In this study we investigated whether the TRPV4 channel was involved in HSV-2 infection in human vaginal epithelial cells. We
showed that the TRPV4 channel was expressed in human vaginal epithelial cells (VK2/E6E7). Using distinct pharmacological tools,
we demonstrated that activation of the TRPV4 channel induced Ca2+ influx, and the TRPV4 channel worked as a Ca2+-permeable
channel in VK2/E6E7 cells. We detected a direct interaction between the TRPV4 channel protein and HSV-2 glycoprotein D in the
plasma membrane of VK2/E6E7 cells and the vaginal tissues of HSV-2–infected mice as well as in phallic biopsies from genital
herpes patients. Pretreatment with specific TRPV4 channel inhibitors, GSK2193874 (1−4 μM) and HC067047 (100 nM), or gene
silence of the TRPV4 channel not only suppressed HSV-2 infectivity but also reduced HSV-2-induced cytokine and chemokine
generation in VK2/E6E7 cells by blocking Ca2+ influx through TRPV4 channel. These results reveal that the TRPV4 channel works as a
Ca2+-permeable channel to facilitate HSV-2 infection in host epithelial cells and suggest that the design and development of novel
TRPV4 channel inhibitors may help to treat HSV-2 infections.

Keywords: Herpes simplex virus type 2; TRPV4 channel; Ca2+ signals; NF-κB; GSK2193874; HC067047

Acta Pharmacologica Sinica (2023) 44:811–821; https://doi.org/10.1038/s41401-022-00975-7

INTRODUCTION
Herpes simplex virus (HSV) infection induces a rapid and transient
increase in the intracellular calcium concentration ([Ca2+]i), which
plays a critical role in facilitating viral entry [1]. Studies have
shown that the interaction between HSV-2 glycoprotein H and
integrin alpha V beta 3 promotes the release of intracellular
calcium stores and contributes to viral entry into human cervical
and primary genital tract epithelial cells [2]. Additionally, HSV-1
glycoprotein D binds the TRPC1 channel to elicit intracellular
Ca2+ release [1]. Deletion of glycoprotein D from HSV-1 does not
induce an [Ca2+]i response [3, 4]. Moreover, T-type calcium
channel blockers and EGTA [Ethylene-bis (oxyethylenenitrilo)
tetraacetic acid], a chelate of extracellular Ca2+, suppress HSV-2
infection [5].
The transient receptor potential vanilloid (TRPV) channel family

is part of the transient receptor potential (TRP) superfamily, which
includes TRPV1-6 [6]. Among them, the TRPV1 and TRPV4 channels
are thermosensitive, share 40%–50% sequence identity, are widely
expressed and control various physiological functions [6, 7].
Accumulating evidence indicates that the function of the TRPV1
channel is closely related to several viral infections. TRPV1
channel activation triggers Ca2+ influx that regulates coxsack-
ievirus B [8], HSV-1 [9], Chikungunya virus [10], human rhinovirus

[11] and respiratory syncytial virus infections [12–14]. Glycoprotein
G, secreted by HSV-2, mediates the localization and activation of
the TRPV1 channel to alter thermal pain sensitivity in the dermis
[15]. However, little is known about the relationship between HSV-
2 infection and the TRPV4 channel. In this study, we investigated
the involvement of the TRPV4 channel in HSV-2 infection using
human epithelial cells, mouse models, and phallic biopsies from
HSV-2-infected patients.
We found that the TRPV4 channel is a Ca2+-permeable channel in

host epithelial cells. During HSV-2 infection, viral glycoprotein D
binds to the TRPV4 channel and induces an increase in intracellular
calcium concentration. Blocking TRPV4 channels exerts antiviral and
anti-inflammatory effects via suppression of Ca2+ oscillations. These
findings reveal a previously unidentified role of the TRPV4 channel
in HSV-2 infection.

MATERIALS AND METHODS
Cells, viruses, and animals
The human vaginal epithelial cell line VK2/E6E7 (ATCC® CRL-2616TM)
was cultured in keratinocyte serum-free medium supplemented with
50 μg/mL bovine pituitary extract, 0.1 ng/ml recombinant epidermal
growth factor (rEGF), 100 μg/ml streptomycin, 100 units/ml penicillin,
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and 0.4mM CaCl2. Vero cells, CHO cells, and human HaCaT
keratinocytes were cultured in DMEM supplemented with glucose
(Gobio, USA), 10% fetal bovine serum (Gibco, Life Technologies), and
1% gentamicin (Sigma).
The HSV-2 strain 333 was provided by the Guangzhou Institute

of Biomedicine and Health (Guangzhou, China). Female BALB/c
mice at the age of five to seven weeks were purchased from
Guangdong Medical Laboratory Animals Center in Guangzhou,
China. The animals were provided with ad libitum access to food
and water in a room maintained at a constant temperature of
24 ± 0.5 °C with a 12:12 h light/dark photoperiod.

Reagents and solutions
GSK1016790A (HY-19608), GSK2193874 (HY-100720), HC067047
(883031-03-6), thapsigargin (HY-13433), ionomycin (56092-82-1),
and forskolin (66575-29-9) were purchased from MedChemExpress
(MCE). Fluo-3 AM (ab145254) and antibodies against HSV-2 gD
were purchased from Abcam. p-NF-κB-p65, IκBα, β-actin, and
GAPDH were purchased from Cell Signaling Technology. HRP-
conjugated secondary antibodies were obtained from Sigma
Aldrich. A normal physiological saline solution (NPSS) was created
containing 137mM NaCl, 5 mM KCl, 1 mM MgCl2, 2.5 mM CaCl2,
10 mM Herpes, and 10mM glucose; this solution had a pH of 7.4. A
Ca2+-free physiological saline solution (Ca2+-free PSS) with a pH of
7.4 was prepared by omitting Ca2+ and adding 2mM EGTA to
the NPSS.

Measurement of intracellular calcium in uninfected cells
The human vaginal epithelial cell lines VK2/E6E7 were seeded on
coverslips. Cells were washed with normal physiological saline
solution and then incubated with Fluo-3 acetoxymethyl ester
(10 μM) at room temperature for 45min. Then, the coverslips were
transferred to a special circular groove of the laser confocal
fluorescence microscope. Drugs were added to the coverslips in
the circular groove. The fluorescence signal was recorded by a
laser scanning confocal imaging system (TCS SP2, Leica Micro-
systems, Mannheim, Germany) at a 488-nm excitation wavelength
and a 520 nm absorption wavelength [1]. The data were further
analyzed with Origin 8.0.

Quantitative PCR
Total RNA was extracted using TRIzol (Invitrogen, USA). RNA
concentrations were measured using a NanoDrop 2000c (Thermo
Scientific). cDNA was reverse transcribed using a PrimeScript™ RT
Reagent Kit (Takara). Quantitative PCR was performed with ChamQ
SYBR qPCR Master Mix (Vazyme, China) on a LightCycler 480
System (Roche, Switzerland).
The primers used in the quantitative PCR are listed in Table 1.

The levels of the target genes were normalized to the levels of

GAPDH mRNA, and relative expression was determined according
to the ΔΔCt method [16].

Western blot
Total protein from epithelial cells or vaginal tissue was extracted
with precooled RIPA buffer (Bio-Rad, CA, USA). The protein
concentration was detected by a BCA protein kit. After separation
with SDS-polyacrylamide gel electrophoresis (SDS‒PAGE), the
protein samples were transferred to polyvinylidene fluoride
membranes (Millipore, MA, USA). The membranes were blocked
with 5% fat-free milk for one hour at room temperature, incubated
with primary antibodies overnight at 4 °C, and incubated with
secondary antibodies for one hour at room temperature. Super-
Signal ECL reagent (Millipore, MA, USA) was used to observe the
chemiluminescence signals using a multifunctional imaging
system (ProteinSimple, CA, USA) [17].

Immunofluorescence
Immunofluorescent staining was performed as previously described
[5]. The infected cells, vaginal tissues, and phallic biopsies were fixed
with acetone at 4 °C for 10min.
After washing with phosphate-buffered saline (PBS) and treating

with 1% BSA for 30min at room temperature, the samples were
incubated with the first primary antibody at 4 °C overnight, followed
by the secondary antibody, goat anti-mouse IgG conjugated to
fluorescein isothiocyanate (FITC) or Texas red (Santa Cruz Biotech-
nology), at room temperature for one hour. VECTA-SHIELD medium
(Vector Labs., Burlingame, CA, USA) was used to preserve the
samples. Finally, images were captured via a fluorescence micro-
scope (TE2000U, Tecan, USA).

Virus infection
VK2/E6E7 cells were inoculated in 6-well plates at a density
of 1 × 106 cells per well. The next day, HSV-2 (MOI= 5) was
administered to the cells in the presence or absence of drugs for 1 h.
Subsequently, the unabsorbed virus was removed, and keratinocyte
serum-free medium containing drugs was added [5]. The cells were
collected at the specified time points for quantitative PCR and
Western blotting. The culture supernatants were collected for
plaque assays.

Plaque assay
The generation of progeny viruses was evaluated by the plaque
assay [5]. Vero cells were inoculated in 12-well plates at a density
of 1.2 × 105 cells per well. Diluted culture supernatants of
infected cells were added to the Vero cells. After incubation for
1 h at 37 °C, the culture supernatants were discarded, and DMEM
containing 2% fetal bovine serum and 1% methylcellulose was
added. After incubation in this solution for 3, 4 days at 37 °C,

Table 1. The primers used in quantitative PCR.

Factor (Forward) (Reverse)

TRPV1 5′-CGTTTCATGTTTGTCTACATCGTC-3′ 5′-TGTGCGACGTGGACTCAGAC-3′

TRPV2 5′-TCTCGTTCATAGACAGCTACTTTGA-3′ 5′-GGAAACACAGCACCTGGGAC-3′

TRPV3 5′-ACACCACCACGGACAACTCA-3′ 5′-ACTTCATATGCAGCAGCGTGT-3′

TRPV4 5′-AGGTGTGCAATGAGGACCAGA-3′ 5′-TGCTGAAGGTCTCG CTGTCA-3′

TRPV5 5′-ATCGCTATCACTCTTGACCTTACTC-3′ 5′-TGACCCTTTAGGGATTGTTCTG-3′

TRPV6 5′-GAAAGCGTGTGAGTGAGGGA-3′ 5′-GAAGATGGAGTTGGCAAGACC-3′

CXCL-9 5′- GGAGATCACCAGTGTGTGGCTCXCL-3′ 5′- AGGCACTGCATTGTGGTAGGA-3′

CXCL-10 5′-AATCGATGCAGTGCTTCCAAGG-3′ 5′-GCAGCTGATTTGGTGACCATCATT-3′

IFN-β 5′-TGCCTGGACCATAGTCAGAGTG-3′ 5′-CAGTTTCGGAGGTAACCTGTAAGTC-3′

TNF-α 5′-CCCAGGGACCTCTCTCTAATCA-3′ 5′-GCTTGAGGGTTTGCTACAACATG-3′

IL-6 5′-GTAGCCGCCCCACACAGA-3′ 5′-CATGTCTCCTTTCTCAGGGCTG-3′
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crystal violet was used to stain the cells. The yield of progeny
viruses in the supernatant was determined by calculating the
number of plaques.

Measurement of intracellular Ca2+ concentrations in infected cells
The intracellular Ca2+ concentrations of infected cells were
measured with BB-cell probe F03 (BB-48112, BestBio, China) [18].
Briefly, cells were inoculated in 12-well plates at a density of
1.5 × 105 cells per well. After infection with HSV-2 (MOI= 5), the
cells were washed three times with Hanks’ balanced salt solution
(HBSS) at the specified time points. The diluted F03 probe was
loaded and incubated for 1 h at 37 °C. After three washes, the cells
were incubated for another 40min. The fluorescence values were
detected with a fluorescence microplate reader. Data are expressed
as fluorescence units.

Mouse model of vaginal HSV-2 infection
All animal experiments were conducted following protocols
approved by the Animal Use and Care Committee of Southern
Medical University. The vaginal cavity of mice was washed
with PBS and rubbed with sterile cotton to increase mouse
susceptibility to vaginal HSV-2 infection. The mice were then
inoculated vaginally with 1 × 106 PFU HSV-2. After seven days,
the phenotypes of the infected mice were scored as follows [19]:

“1”, slight genital erythema and edema; “2”, moderate genital
inflammation; “3”, severe exudative genital lesions; “4”, hind limb
paralysis; or “5”, death. Vaginal tissues were collected for
immunofluorescent analysis or immunoprecipitation.

Immunoprecipitation
The interaction between the TRPV4 channels and HSV-2 glyco-
protein D was investigated by immunoprecipitation [1]. Epithelial
cells were infected with HSV-2 (MOI= 5) for one hour. After the
cells were washed with precooled PBS, IP lysis buffer (Beyotime,
Shanghai, China) was added for 30 min on ice. Next, the lysates of
infected cells or vaginal tissues were centrifuged at 12,000 rpm for
15min at 4 °C. The 10% supernatant was removed for use as the
input group. The other lysates were mixed with protein A/G beads
(GE Healthcare, Sweden) and incubated overnight with anti-TRPV4
antibody at 4 °C. After the lysates were washed with precooled IP
buffer, an appropriate amount of the solution was analyzed by
Western blot.

Statistical analysis
Experimental data are expressed as themeans ± SEMs. The Students’
two-tailed t-tests were used for two sets of data analysis. Three or
more groups were analyzed with one-way ANOVAs followed
by Dunnett’s post hoc test using GraphPad Prism 8.0 software

Fig. 1 The TRPV4 channel was expressed in host epithelial cells. a mRNA expression of TRPV1-6 in the human vaginal epithelial cell line
VK2/E6E7 was measured with quantitative PCR. b TPRV4 channel expression in human HaCaT keratinocytes was detected by Western blot.
c The localization of the TRPV4 channel (green) was observed by immunofluorescent staining in VK2/E6E7 cells. Upper scale bar: 10 μm; lower
scale bar: 20 μm.
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(*P < 0.05, **P < 0.01, ***P < 0.001). Two-tailed P values < 0.05 were
considered statistically significant.

RESULTS
The TRPV4 channel is expressed in HSV-2-infected epithelial cells
The TRPV channel family has six members, namely, TRPV1 through
TRPV6 [20]. The expression of TRPV channels was measured by
real-time quantitative PCR. The results showed that mRNA from
the TRPV1, TRPV3, and TRPV4 channels was present in human
vaginal epithelial cells (VK2/E6E7), as shown in Fig. 1a. The
expression of the TRPV4 channel was detected by Western blot in
human HaCaT keratinocytes (Fig. 1b) and was further confirmed

by immunofluorescent staining. Intense immunofluorescence
from the TRPV4 channel (green) was observed in the plasma
membrane (Fig. 1c). These results demonstrate the presence of
the TRPV4 channel in HSV-2 host epithelium cells.

The TRPV4 channel is a Ca2+-permeable channel in host epithelial
cells
To assess the function of the TRPV4 channel in epithelial cells, we
observed the dynamic changes in intracellular Ca2+ with confocal
microscopy. The classic activator of the TRPV4 channel,
GSK1016790A (GSK, 1 μM), induced a significant increase in
[Ca2+]i in epithelial cells in normal physiological saline solution
(NPSS), as seen in Fig. 2a. Interestingly, GSK did not evoke this

Fig. 2 Changes in intracellular Ca2+ were induced by the activation of the TRPV4 channel. a GSK1016790A (GSK, 1 μM), a specific TRPV4
channel activator, significantly increased the intracellular Ca2+ concentration in normal physiological saline solution (NPSS). b GSK1016790A
(GSK, 1 μM) did not increase the intracellular Ca2+ concentration in Ca2+-free solution (Ca2+-free-PSS). Thapsigargin (Tg, 1 μM) was used to
indicate cell survival. c Thapsigargin (Tg, 1 μM), which induces the release of Ca2+ stores in the endoplasmic reticulum (ER) and prevents
refilling by inhibiting the ER Ca2+-ATPase, had no noticeable effect on the elevation of intracellular Ca2+ induced by GSK in NPSS. Ionomycin
(Iono, 5 μM) was used to indicate cell survival. d, e Ruthenium red (RUR, 100 nM, a nonspecific TRPV4 inhibitor) or HC067047 (HC067, 100 nM, a
specific TRPV4 inhibitor) obviously hindered GSK-induced elevation of intracellular Ca2+. f The inhibitory effects of different conditions on the
GSK-induced Ca2+ influx are summarized. Data are represented as the mean ± SD (**P < 0.01, compared with controls) and are from three
independent experiments consisting of 30 cells each.
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Fig. 3 The TRPV4 channel protein interacted with HSV-2 glycoprotein D. a The human vaginal epithelial cell line VK2/E6E7 was infected
with HSV-2 (MOI= 5). After 24 h of incubation, the cells were collected for immunoprecipitation to evaluate the interaction between the
TRPV4 channel and glycoprotein D (left) or glycoprotein B (middle). Vaginal tissues collected from infected mice underwent
immunoprecipitation to observe the TRPV4-gD interaction (right). b After transfection with the TRPV4 channel, CHO cells were infected
with HSV-2 (MOI= 5) for 24 h and then collected for immunofluorescence staining to determine TRPV4-glycoprotein D colocalization. In
the Pearson correlation analysis, Image J calculated r= 0.78 ± 0.09. Dil indicates the plasma membrane in red, the TRPV4 protein in blue
and the HSV-2 glycoprotein D in green. “a” represents CHO cells successfully transfected with the TRPV4 channel; “b” represents CHO cells
not successfully transfected with the TRPV4 channel. c A WT-mouse model of vaginal infection was established using HSV-2 strain 333;
mouse vaginal tissues were collected for immunofluorescent staining. Here, red represents the TRPV4 protein, and green represents HSV-2
glycoprotein D. d The phallic biopsies from genital herpes patients were fixed and labeled with immunofluorescent staining, in which red
indicates the TRPV4 protein and green indicates HSV-2 glycoprotein D.
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[Ca2+]i increase in Ca2+-free solution, as seen in Fig. 2b. Thapsi-
gargin (Tg, 1 μM) induces the release of intracellular endoplasmic
reticulum (ER) Ca2+ stores and prevents refilling by inhibiting ER
Ca2+-ATPase. However, thapsigargin pretreatment did not eliminate
the GSK-induced Ca2+ influx (Fig. 2c), indicating that activation of

the TRPV4 channel causes Ca2+ influx. In addition, the GSK-induced
Ca2+ influx was eliminated by pretreating cells with ruthenium red
(RUR, a nonspecific TRPV4-channel inhibitor) or HC067047 (a
specific TRPV4-channel inhibitor) [21], as shown in Fig. 2d, e. These
data suggest that the TRPV4 channel is a Ca2+-permeable channel
in host epithelial cells. Each experiment was independently
repeated three times, and the data from 30 cells were selected for
statistical analysis, as shown in Fig. 2f.

The TRPV4 channel interacts with HSV-2 glycoprotein D
During the early stages of viral entry, HSV glycoprotein D interacts
with multiple cell surface receptors, including HVEM [22, 23], nectin-
1 [24], and nectin-2 [25]. HSV-1 glycoprotein D also directly interacts
with the TRPC1 channel, another member of the TRP superfamily [1].
This study aimed to examine whether HSV-2 glycoprotein D interacts
with the TRPV4 channel. In coimmunoprecipitation, the TRPV4
channel and HSV-2 glycoprotein D were detected in the infected
epithelial cells, as shown in Fig. 3a (left), but other viral glycoproteins,
such as glycoprotein B, were not found, as shown in Fig. 3a (middle).
To further explore the interaction of the TRPV4 channel and
glycoprotein D under pathological conditions, we established a WT
mouse model of vaginal infection using HSV-2 strain 333. Consistent
with the results in infected cells, coimmunoprecipitation of the
TRPV4 channel and glycoprotein D was observed in infectedmice, as
shown in Fig. 3a (right). These data suggest that the TRPV4 protein
directly interacts with HSV-2 glycoprotein D.
To evaluate the colocalization of the TRPV4 protein and

glycoprotein D, we transfected CHO cells lacking nectin-1 (a
glycoprotein D receptor [26]) with the TRPV4 channel. The overlap
of the fluorescence signal between the TRPV4 channel (blue) and
glycoprotein D (green) was observed in the TRPV4-transfected
cells, as shown in Fig. 3b. The CHO cells that were successfully
transfected with the TRPV4 channel are indicated with “a”; those
not successfully transfected with the TRPV4 channel are indicated
with “b”. The data show that “a” exhibit greater glycoprotein D
fluorescence than “b” in the plasma membrane. Image J was used
to perform Pearson correlation analysis on fifty images; r was
calculated as 0.78 ± 0.09, indicating that the green fluorescence of
glycoprotein D and the blue fluorescence of the TRPV4 channel
had high colocalization.
To further examine the colocalization of TRPV4 and glycopro-

tein D under pathological conditions, vaginal tissues from infected
mice and phallic biopsies from genital herpes patients were
collected for immunofluorescence assays. The fluorescence
analysis indicated colocalization of the TRPV4 channel (red) and

Fig. 4 TRPV4 channel inhibitors suppressed HSV-2 infection.
a Effects of TRPV4 channel inhibitors and siRNA on HSV-2-induced
Ca2+ oscillations in epithelial cells. The cells were infected with HSV-
2 (MOI= 5) in the presence or absence of the specific TRPV4-
channel inhibitors HC067047 (HC067, 100 nM) and GSK2193874
(GSK219, 4 μM). The cells were collected at the time specified by the
calcium determination kit, and the changes in Ca2+ oscillations are
shown in the left image. After transfection with siRNA, the cells
infected with HSV-2 (MOI= 5) were collected at the time specified
by the kit. The changes in Ca2+ oscillations are shown in the right
image. b Effects of TRPV4 channel inhibitors on viral protein
expression. The cells were infected with HSV-2 (MOI= 5) in the
presence of the indicated concentrations of GSK2193874, HC067047
(100 nM), EGTA (an extracellular calcium chelating agent; 3.6 mM), or
acyclovir (ACV; 1 μg/ml) separately for 24 h. The cells were collected
to analyze viral glycoprotein D expression by Western blot. c The
supernatant was harvested for virus titration by plaque assay. d The
expression of the viral genes glycoprotein D and VP16 was
measured by real-time quantitative PCR. Acyclovir, the typical drug
used to treat HSV infection, served as the positive control. Data
represent the mean ± SD of three independent experiments.
**P < 0.01 vs. the control.
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glycoprotein D (green) in the vaginal tissues of infected mice, as
shown in Fig. 3c. Genital herpes and vaginitis are common
symptoms of HSV-2 infection among humans [27]. Thus, some
phallic biopsies from patients were selected for detection, and the
same colocalization pattern of glycoprotein D and the TRPV4
channel was observed, as shown in Fig. 3d. These findings confirm
that the TRPV4 channel and glycoprotein D colocalize in the
plasma membrane of HSV-2-infected cells.

Blocking TRPV4 activity produces an anti-HSV-2 effect
The Ca2+ influx mediated by the TRPV4 channel controls RNA virus
infectivity [28]. Here, we explored the possibility that Ca2+ influx
through TRPV4 channels contributes to infection of HSV-2, a DNA
virus. The specific TRPV4-channel inhibitors GSK2193874 and
HC067047 markedly decreased the Ca2+ oscillations induced by
HSV-2 infection (Fig. 4a; left). A reduction in Ca2+ oscillations was
also observed in the cells with siRNA knockdown of the TRPV4
channel (Fig. 4a; right). The data show that the increase in the
intracellular calcium concentration triggered by HSV-2 infection is
partly dependent on the TRPV4 channel.
To determine the antiviral effect of specific TRPV4-channel

inhibitors, we evaluated their effect on HSV-2 infection in host
epithelial cells. The results showed that GSK2193874 and
HC067047 visibly suppressed the synthesis of viral glycoprotein
D (Fig. 4b), the production of progeny viruses (Fig. 4c), and the

transcription of viral genes (VP16 and gD) (Fig. 4d). Acyclovir, the
typical drug used to treat HSV infections, served as the positive
control [29]. EGTA, which depleted extracellular Ca2+, as seen in
Fig. 4b-d, had similar antiviral effects, indicating that the anti-HSV-
2 effect of blocking the TRPV4 channel is closely related to Ca2+

oscillations. Further investigation showed that siRNA knockdown
of the TRPV4 channel also inhibited viral gene transcription
(Fig. 5b) and progeny virus production (Fig. 5c). These results
suggest that blocking the TRPV4 channel inhibits HSV-2 infection
by reducing the Ca2+ influx.

Blocking TRPV4 activity alleviates HSV-2-induced inflammation
Previous studies have shown that Ca2+ influx through TRPV4
channels creates a long-lasting inflammatory signal, and TLR-
mediated inflammation is suppressed by blocking the TRPV4
channel [30]. Various pattern recognition receptors, such as TLR2,
TLR9, and cGAS, can identify HSV-2 and then promote proin-
flammatory cytokine generation [31, 32]. To explore the relation-
ship between the TRPV4 channel, a Ca2+-permeable channel, and
the inflammatory signals in epithelial cells induced by HSV-2
infection, we investigated the anti-inflammatory effect of TRPV4-
channel inhibitors in the infected cells. The specific TPRV4-channel
inhibitor HC067047 (100 nM) reduced the HSV-2-induced expres-
sion of cytokines (TNF-α and IL-6) and chemokines (CXCL-9
and CXCL-10) at three specific time points, as shown in Fig. 6a.

Fig. 5 Knockdown of the TRPV4 channel inhibited HSV-2 infection. aWestern blot analysis of TRPV4 channel expression in human epithelial
cells transfected with siRNA against the TRPV4 channel. b The transfected cells were infected with HSV-2 (MOI= 5) for 24 h and collected for
viral gene (glycoprotein D and VP16) expression analysis by real-time quantitative PCR. c The supernatant was harvested for virus titration by
plaque assay. Data represent the mean ± SD of three independent experiments. **P < 0.01 vs. the control.
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Three different concentrations of GSK2193874, another specific
TPRV4-channel inhibitor, effectively decreased the expression of
TNF-α, IL-6, CXCL-9, and CXCL-10 at 24 h, as shown in Fig. 6b.
After transfection with siRNA against the TRPV4 channel, the
inflammatory signals in infected cells markedly declined, as shown
in Fig. 6c. These data indicate that the inflammatory signals

induced by HSV-2 infection are closely tied to TRPV4 channel
activity in epithelial cells.
An increase in intracellular Ca2+ has been shown to promote

the transcriptional activity of NF-κB [33]. HSV-2 infection has also
been shown to promote the activation of NF-κB and the secretion
of interleukins and chemokines [34]. According to the above

Fig. 6 HSV-2-induced inflammation is inhibited by blocking TRPV4 activity. a Human epithelial cells were infected with HSV-2 (MOI= 5) in
the presence or absence of HC067047 (100 nM) and then harvested at 2, 4, or 6 h to analyze the expression of cytokines (TNF-α, IL-6) and
chemokines (CXCL-9 and CXCL-10) by real-time quantitative PCR. b The infected cells were treated with the indicated concentrations of
GSK2193874 for 24 h and then collected for cytokine and chemokine expression analysis. c The transfected cells were infected with HSV-2
(MOI= 5) for 24 h and then digested for cytokine and chemokine expression analysis by real-time quantitative PCR. d The cells were infected with
HSV-2 (MOI= 5) in the presence or absence of HC067047, EGTA, or acyclovir (ACV, 1 μg/ml) for 24 h and then IκBα and phosphorylated p65
protein expression was detected by Western blot. Data represent the mean ± SD of three independent experiments. **P < 0.01 vs. the control.
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findings, we decided to explore whether NF-κB activation induced
by HSV-2 infection was due to Ca2+ influx through TRPV4
channels. We found that inhibition of the TRPV4 channel by
HC067047 (100 nM) or EGTA (3.6 mM) markedly reduced the
expression of phosphorylated p65 and IκBα in infected cells, as
shown in Fig. 6d. These data indicate that the TRPV4 channel
participates in NF-κB activation in HSV-2-infected cells.

DISCUSSION
The transient receptor potential vanilloid (TRPV) channels have
been implicated in various pathophysiological processes, includ-
ing viral infections. The TRPV4 channel binds the DEAD-box RNA
helicase DDX3X to regulate RNA virus infectivity [28]. Inhibition of
the TRPV4 channel thus provides an antiviral effect against RNA
viruses, such as the Zika virus [35]. This study found that TRPV1,
TRPV3 and TRPV4 channels are expressed in human epithelial
cells. A previous study reported a correlation between TRPV1
channel activity and HSV-2 infection and demonstrated that HSV-2
glycoprotein G modulates TRPV1 channel activation [15]. In
infected epithelial cells, the expression of the TRPV3 channel is
lower than that of the TRPV4 channel. In addition, the TRPV3
channel is mainly expressed in the endoplasmic reticulum (ER)
[36]. The changes in [Ca2+]i play a critical role in the entry of
herpes simplex virus into cells [1], indicating that the Ca2+-
permeable channel expressed in the plasma membrane (TRPV4) is
more important than the channel expressed in the ER (TRPV3)
for viral entry. Thus, we investigate the effects of the TRPV4
channel on HSV-2 infection in this study. Our findings show
that the TRPV4 channel, a Ca2+-permeable channel, directly binds
HSV-2 glycoprotein D to facilitate HSV-2 infection and inflamma-
tion in host epithelial cells.
The HSV-2 virus enters the body primarily through epithelial cells

and eventually establishes latent infections in the sacral ganglion

[37]. The TRPV4 channel is abundantly expressed in nerve cells [38].
Therefore, we suspect that the interaction between the TRPV4
channel and glycoprotein D may be a potential mechanism
underlying the establishment of latent infection in the sacral
ganglion. Our study therefore implies that the TRPV4 channel plays
a potential role in latent infection.
The TRPV4 channel protein contains 871 amino acids and four

extracellular domains [6]. Which of these four extracellular domains
is key to the interaction between the TRPV4 channel and
glycoprotein D? We attempted to identify the specific binding
site(s) of the TRPV4-gD interaction with virtual docking procedures.
Multiple binding sites were predicted at the protein‒protein
interface (data not shown). These binding sites are mutated and
individually expressed in CHO cells during HSV-2 infection. However,
differences in the interactions between glycoprotein D and the
mutant TRPV4s have not been detected in infected CHO cells. This
outcome may be explained as follows. On the one hand, CHO cells
transfected with mutant TRPV4 and infected with HSV-2 have low
survival rates. On the other hand, the TRPV4 channel has five
different splice variants (TRPV4A-E), all of which have different amino
acid deletions [7, 38]. Therefore, it’s reasonable for us to doubt that
the effective interaction between glycoprotein D and the five
different TRPV4 splice variants extensively differs; additionally, it
would be complicated to analyze. The specific binding sites merit
further evaluation.
Several pattern-recognition receptors (PRRs), such as TLRs and

cyclic GMP-AMP synthase (cGAS), act as the sensors of HSV-2
[39–41]. These PRRs recognize the HSV-2 glycoprotein and then
induce NF-κB activation and inflammatory secretion [32, 42],
including TNF-α, IL-6, CXCL-9, and CXCL-10 [37, 43]. In addition, a
rise in intracellular Ca2+ concentration can enhance transcription
of NF-κB and thereby aggravate inflammatory signaling [44, 45].
Indeed, we found that blockade of the TRPV4 channel prevents
the production of TNF-α, IL-6, CXCL-9, and CXCL-10 and reduces

Fig. 7 The proposed working model of the function and mechanism of the TRPV4 channel in HSV-2 infection. The TRPV4 channel is a
calcium-permeable channel in epithelial cells. During HSV-2 infection, the interaction between glycoprotein D and the TRPV4 channel
facilitates virus infection and exacerbates NF-κB activation by increasing the intracellular calcium concentration. Inhibition of TRPV4 channel
activity diminishes viral infection and inflammation.
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the phosphorylation of p65 in HSV-2-infected cells, indicating that
the TRPV4 channel regulates the inflammatory signals caused by
HSV-2 infection.
In conclusion, we propose the model shown in Fig. 7. During

HSV-2 infection, the interaction between glycoprotein D and the
TRPV4 channel triggers intracellular Ca2+ oscillation, an essential
factor in virus entry [2, 4] that facilitates virus infection and
exacerbates the activation of NF-κB. Blockade of the TRPV4
channel decreases the production of progeny viruses and the
activation of NF-κB. Our findings elucidate the previously
unknown role of the TRPV4 channel in HSV-2 infection. Further
investigations are urgently needed to confirm that the TRPV4
channel is an entry receptor for HSV-2.
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