Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery and identification of a novel small molecule BCL-2 inhibitor that binds to the BH4 domain

Abstract

The B-cell lymphoma 2 (BCL-2) protein family plays a pivotal role in regulating the apoptosis process. BCL-2, as an antiapoptotic protein in this family, mediates apoptosis resistance and is an ideal target for cell death strategies in cancer therapy. Traditional treatment modalities target BCL-2 by occupying the hydrophobic pocket formed by BCL-2 homology (BH) domains 1–3, while in recent years, the BH4 domain of BCL-2 has also been considered an attractive novel target. Herein, we describe the discovery and identification of DC-B01, a novel BCL-2 inhibitor targeting the BH4 domain, through virtual screening combined with biophysical and biochemical methods. Our results from surface plasmon resonance and cellular thermal shift assay confirmed that the BH4 domain is responsible for the interaction between BCL-2 and DC-B01. As evidenced by further cell-based experiments, DC-B01 induced cell killing in a BCL-2-dependent manner and triggered apoptosis via the mitochondria-mediated pathway. DC-B01 disrupted the BCL-2/c-Myc interaction and consequently suppressed the transcriptional activity of c-Myc. Moreover, DC-B01 inhibited tumor growth in vivo in a BCL‑2‑dependent manner. Collectively, these results indicate that DC-B01 is a promising BCL-2 BH4 domain inhibitor with the potential for further development.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Reported BCL-2 inhibitors.
Fig. 2: Evaluation of the potential binding sites of BCL-2.
Fig. 3: Discovery and validation of DC-B01 as a selective inhibitor of the BCL-2 BH4 domain.
Fig. 4: DC-B01 induces cancer cell killing in a BCL-2-dependent manner.
Fig. 5: DC-B01 induces apoptosis via the mitochondria-mediated apoptosis pathway.
Fig. 6: DC-B01 suppresses the transcriptional activity of c-Myc via inhibition of the BCL-2/c-Myc interaction.
Fig. 7: DC-B01 represses the growth of H460 lung cancer tumor xenografts in a BCL-2-dependent manner.

References

  1. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010;37:299–310.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63.

    CAS  PubMed  Article  Google Scholar 

  3. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. BH3-only proteins: Orchestrators of apoptosis. Biochim Biophys Acta. 2011;1813:508–20.

    CAS  PubMed  Article  Google Scholar 

  4. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    CAS  PubMed  Article  Google Scholar 

  6. Warren CFA, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019;10:177.

    PubMed  PubMed Central  Article  Google Scholar 

  7. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16:273–84.

    CAS  PubMed  Article  Google Scholar 

  8. Casara P, Davidson J, Claperon A, Le Toumelin-Braizat G, Vogler M, Bruno A, et al. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget. 2018;9:20075–88.

    PubMed  PubMed Central  Article  Google Scholar 

  9. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22:45–64.

    CAS  PubMed  Article  Google Scholar 

  10. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10:375–88.

    CAS  PubMed  Article  Google Scholar 

  11. Luo Q, Pan W, Zhou S, Wang G, Yi H, Zhang L, et al. A novel BCL-2 inhibitor APG-2575 exerts synthetic lethality with BTK or MDM2-p53 inhibitor in diffuse large B-cell lymphoma. Oncol Res. 2020;28:331–44.

    PubMed  PubMed Central  Article  Google Scholar 

  12. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81.

    CAS  PubMed  Article  Google Scholar 

  13. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.

    CAS  PubMed  Article  Google Scholar 

  14. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.

    CAS  PubMed  Article  Google Scholar 

  15. Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128:1173–86.

    CAS  PubMed  Article  Google Scholar 

  17. Rong YP, Barr P, Yee VC, Distelhorst CW. Targeting Bcl-2 based on the interaction of its BH4 domain with the inositol 1,4,5-trisphosphate receptor. Biochim Biophys Acta. 2009;1793:971–8.

    CAS  PubMed  Article  Google Scholar 

  18. Rong YP, Bultynck G, Aromolaran AS, Zhong F, Parys JB, De Smedt H, et al. The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci USA. 2009;106:14397–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Jin Z, May WS, Gao F, Flagg T, Deng X. Bcl2 suppresses DNA repair by enhancing c-Myc transcriptional activity. J Biol Chem. 2006;281:14446–56.

    CAS  PubMed  Article  Google Scholar 

  20. Denis GV, Yu Q, Ma P, Deeds L, Faller DV, Chen CY. Bcl-2, via its BH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J Biol Chem. 2003;278:5775–85.

    CAS  PubMed  Article  Google Scholar 

  21. Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell. 1996;87:629–38.

    CAS  PubMed  Article  Google Scholar 

  22. Shimizu S, Konishi A, Kodama T, Tsujimoto Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci USA. 2000;97:3100–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell. 2004;116:527–40.

    CAS  PubMed  Article  Google Scholar 

  24. Han B, Park D, Li R, Xie M, Owonikoko TK, Zhang G, et al. Small-molecule Bcl2 BH4 antagonist for lung cancer therapy. Cancer Cell. 2015;27:852–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Zhang H, Nimmer P, Rosenberg SH, Ng SC, Joseph M. Development of a high-throughput fluorescence polarization assay for Bcl-x(L). Anal Biochem. 2002;307:70–5.

    CAS  PubMed  Article  Google Scholar 

  26. Lama L, Adura C, Xie W, Tomita D, Kamei T, Kuryavyi V, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat Commun. 2019;10:2261.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Padilla-Salinas R, Sun L, Anderson R, Yang X, Zhang S, Chen ZJ, et al. Discovery of small-molecule cyclic GMP-AMP synthase inhibitors. J Org Chem. 2020;85:1579–600.

    CAS  PubMed  Article  Google Scholar 

  28. Hou H, Yang R, Liu X, Wu X, Zhang S, Chen K, et al. Discovery of triazoloquinoxaline as novel STING agonists via structure-based virtual screening. Bioorg Chem. 2020;100:103958.

    CAS  PubMed  Article  Google Scholar 

  29. Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang SY, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 2018;564:439–43.

    CAS  PubMed  Article  Google Scholar 

  30. Guo ZQ, Zheng T, Chen B, Luo C, Ouyang S, Gong S, et al. Small-molecule targeting of E3 ligase adaptor SPOP in kidney cancer. Cancer Cell. 2016;30:474–84.

    CAS  PubMed  Article  Google Scholar 

  31. Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, et al. Structures of SPOP-substrate complexes: Insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell. 2009;36:39–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Halgren T. New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des. 2007;69:146–8.

    CAS  PubMed  Article  Google Scholar 

  33. Halgren TA. Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model. 2009;49:377–89.

    CAS  PubMed  Article  Google Scholar 

  34. Nayal M, Honig B. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins. 2006;63:892–906.

    CAS  PubMed  Article  Google Scholar 

  35. Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21:92–101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Davids MS. Targeting BCL-2 in B-cell lymphomas. Blood. 2017;130:1081–8.

    CAS  PubMed  Article  Google Scholar 

  37. Dawson SJ, Makretsov N, Blows FM, Driver KE, Provenzano E, Le Quesne J, et al. BCL2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer. 2010;103:668–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Parry N, Wheadon H, Copland M. The application of BH3 mimetics in myeloid leukemias. Cell Death Dis. 2021;12:222.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Pore MM, Hiltermann TJ, Kruyt FA. Targeting apoptosis pathways in lung cancer. Cancer Lett. 2013;332:359–68.

    CAS  PubMed  Article  Google Scholar 

  40. Liu Z, Wild C, Ding Y, Ye N, Chen H, Wold EA, et al. BH4 domain of Bcl-2 as a novel target for cancer therapy. Drug Discov Today. 2016;21:989–96.

    CAS  PubMed  Article  Google Scholar 

  41. Peirs S, Matthijssens F, Goossens S, Van de Walle I, Ruggero K, de Bock CE, et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood. 2014;124:3738–47.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lingang Laboratory (LG202102-01-02; LG-QS-202204-01), the National Natural Science Foundation of China (81903639), the Shanghai Municipal Science and Technology Major Project, the Natural Science Foundation of Shanghai (22ZR1474300) and the Shanghai Sailing Program (19YF1457800).

Author information

Authors and Affiliations

Authors

Contributions

MYZ and SLZ designed the research. MYZ, SLZ, and HLJ supervised the study. JYZ and RRY developed the methodology. JYZ, RRY, JC, JS, ZSF, YHZ, and CHL acquired and analyzed the data. SLZ, JYZ, RRY, and JC wrote and reviewed the manuscript. All authors discussed the study.

Corresponding authors

Correspondence to Hua-liang Jiang, Ming-yue Zheng or Su-lin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Jy., Yang, Rr., Chang, J. et al. Discovery and identification of a novel small molecule BCL-2 inhibitor that binds to the BH4 domain. Acta Pharmacol Sin (2022). https://doi.org/10.1038/s41401-022-00936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-022-00936-0

Keywords

  • Bcl-2
  • BH4 domain
  • apoptosis
  • antitumor
  • virtual screening

Search

Quick links