Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pan-KRAS inhibitors suppress proliferation through feedback regulation in pancreatic ductal adenocarcinoma

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is currently one of the most lethal cancers worldwide. Several basic studies have confirmed that Kirsten rat sarcoma virus (KRAS) is a key driver gene for the occurrence of PDAC, and KRAS mutations have also been found in most patients in clinical studies. In this study, two pan-KRAS inhibitors, BI-2852 and BAY-293, were chosen as chemical probes to investigate their antitumor potency in PDAC. Their inhibitory effects on KRAS activation were validated in vitro and their antiproliferative potency in PDAC cell lines were profiled, with half-maximal inhibitory concentration (IC50) values of approximately 1 μM, demonstrating the therapeutic potential of pan-KRAS inhibitors in the treatment of PDAC. However, feedback regulation in the KRAS pathway weakened inhibitor activity, which was observed by a 50 times difference in BAY-293 from in vitro activity. Furthermore, pan-KRAS inhibitors effectively inhibited cell proliferation in 3D organoids cultured from PDAC patient samples; however, there were some variations between individuals. These results provide a sufficient theoretical foundation for KRAS as a clinical therapeutic target and for the application of pan-KRAS inhibitors in the treatment of PDAC, with important scientific significance in translational medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BI-2852 and BAY-293 inhibited the activation of Kirsten rat sarcoma virus (KRAS) mediated by SOS1.
Fig. 2: BAY-293 slightly inhibited proliferation of Kirsten rat sarcoma virus (KRAS)-driven cancer cells in 2D culture.
Fig. 3: BI-2852 and BAY-293 inhibited proliferation of Kirsten rat sarcoma virus (KRAS)-driven cancer cells.
Fig. 4: BAY-293 regulated Kirsten rat sarcoma virus (KRAS) signaling pathway.
Fig. 5: BAY-293 induced feedback regulations in pancreatic ductal adenocarcinoma (PDAC).
Fig. 6: BAY-293 promoted pancreatic ductal adenocarcinoma (PDAC) cell apoptosis.
Fig. 7: Modeling human pancreatic ductal adenocarcinoma (PDAC) with patient-derived organoids.
Fig. 8: BAY-293 inhibited cell growth of pancreatic ductal adenocarcinoma (PDAC) patient-derived organoids.

References

  1. Ekbom A, McLaughlin JK, Karlsson B-M, Nyrén O, Gridley G, Adami H-O, et al. Pancreatitis and pancreatic cancer: a population-based study. JNCI: J Natl Cancer Inst. 1994;86:625–7.

    Article  CAS  PubMed  Google Scholar 

  2. Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nat Rev Dis Prim. 2016;2:16022.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  4. Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018;15:333–48.

    Article  PubMed  Google Scholar 

  5. Conroy T, Hammel P, Hebbar M, Ben Abdelghani M, Wei AC, Raoul JL, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379:2395–406.

    Article  CAS  PubMed  Google Scholar 

  6. Binenbaum Y, Na’ara S, Gil Z. Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat. 2015;23:55–68.

    Article  PubMed  Google Scholar 

  7. Zheng C, Jiao X, Jiang Y, Sun S. ERK1/2 activity contributes to gemcitabine resistance in pancreatic cancer cells. J Int Med Res. 2013;41:300–6.

    Article  CAS  PubMed  Google Scholar 

  8. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lohr M, Kloppel G, Maisonneuve P, Lowenfels AB, Luttges J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia. 2005;7:17–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Iodice S, Gandini S, Maisonneuve P, Lowenfels AB. Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg. 2008;393:535–45.

    Article  PubMed  Google Scholar 

  11. Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2020;17:153–68.

    Article  CAS  PubMed  Google Scholar 

  12. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell. 2012;21:836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, et al. Ras conformational ensembles, allostery, and signaling. Chem Rev. 2016;116:6607–65.

    Article  CAS  PubMed  Google Scholar 

  14. Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev. 2016;45:4929–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170:17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294:1299–304.

    Article  CAS  PubMed  Google Scholar 

  17. Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129:865–77.

    Article  CAS  PubMed  Google Scholar 

  18. Miller MS, Miller LD. RAS mutations and oncogenesis: not all RAS mutations are created equally. Front Genet. 2011;2:100.

    PubMed  Google Scholar 

  19. Jonckheere N, Vasseur R, Van, Seuningen I. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol. 2017;111:7–19.

    Article  PubMed  Google Scholar 

  20. Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov. 2020;19:533–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, et al. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev. 2021;40:819–35.

  22. FDA Approves First KRAS Inhibitor: Sotorasib. Cancer Discov. 2021;11:OF4-OF.

  23. Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29:725–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, Mayer M, et al. Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci USA. 2019;116:15823–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hillig RC, Sautier B, Schroeder J, Moosmayer D, Hilpmann A, Stegmann CM, et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS-SOS1 interaction. Proc Natl Acad Sci USA. 2019;116:2551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abraham SJ, Muhamed I, Nolet R, Yeung F, Gaponenko V. Expression, purification, and characterization of soluble K-Ras4B for structural analysis. Protein Expr Purif. 2010;73:125–31.

    Article  CAS  PubMed  Google Scholar 

  27. Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA. 2012;109:5299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38.

    Article  CAS  PubMed  Google Scholar 

  30. Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed. 2012;51:6140–3.

    Article  CAS  Google Scholar 

  31. Jeng HH, Taylor LJ, Bar-Sagi D. Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis. Nat Commun. 2012;3:1168.

    Article  PubMed  Google Scholar 

  32. Patricelli MP, Janes MR, Li LS, Hansen R, Peters U, Kessler LV, et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 2016;6:316–29.

    Article  CAS  PubMed  Google Scholar 

  33. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172:578–89.

    Article  CAS  PubMed  Google Scholar 

  34. Fujita-Sato S, Galeas J, Truitt M, Pitt C, Urisman A, Bandyopadhyay S, et al. Enhanced MET translation and signaling sustains K-Ras–Driven proliferation under anchorage-independent growth conditions. Cancer Res. 2015;75:2851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Porru M, Pompili L, Caruso C, Biroccio A, Leonetti C. Targeting KRAS in metastatic colorectal cancer: current strategies and emerging opportunities. J Exp Clin Cancer Res. 2018;37:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Matsuo Y, Campbell PM, Brekken RA, Sung B, Ouellette MM, Fleming JB, et al. K-Ras promotes angiogenesis mediated by immortalized human pancreatic epithelial cells through mitogen-activated protein kinase signaling pathways. Mol Cancer Res. 2009;7:799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal. 2014;7:ra42.

    PubMed  PubMed Central  Google Scholar 

  38. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.

    Article  CAS  PubMed  Google Scholar 

  39. Howes JE, Akan DT, Burns MC, Rossanese OW, Waterson AG, Fesik SW. Small molecule-mediated activation of RAS elicits biphasic modulation of phospho-ERK levels that are regulated through negative feedback on SOS1. Mol Cancer Ther. 2018;17:1051–60.

    Article  CAS  PubMed  Google Scholar 

  40. Theard PL, Sheffels E, Sealover NE, Linke AJ, Pratico DJ, Kortum RL. Marked synergy by vertical inhibition of EGFR signaling in NSCLC spheroids shows SOS1 is a therapeutic target in EGFR-mutated cancer. Elife. 2020;9:e58204.

  41. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407–18.

    Article  CAS  PubMed  Google Scholar 

  42. Bournet B, Buscail C, Muscari F, Cordelier P, Buscail L. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. Eur J Cancer. 2016;54:75–83.

    Article  CAS  PubMed  Google Scholar 

  43. Pantsar T. The current understanding of KRAS protein structure and function. Comput Struct Biotechnol J. 2020;18:189–98.

    Article  CAS  PubMed  Google Scholar 

  44. Vatansever S, Erman B, Gümüş ZH. Comparative effect of oncogenic mutations G12C, G12V, G13D, and Q61H on local conformations and dynamics of K-Ras. Comput Struct Biotechnol J. 2020;18:1000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu S, Ni D, Wang C, He X, Lin H, Wang Z, et al. Deactivation pathway of Ras GTPase underlies conformational substates as targets for drug design. Acs Catal. 2019;9:7188–96.

    Article  CAS  Google Scholar 

  46. Ni D, Li X, He X, Zhang H, Zhang J, Lu S. Drugging K-RasG12C through covalent inhibitors: mission possible? Pharmacol Ther. 2019;202:1–17.

    Article  CAS  PubMed  Google Scholar 

  47. Qiu Y, Wang Y, Chai Z, Ni D, Li X, Pu J, et al. Targeting RAS phosphorylation in cancer therapy: Mechanisms and modulators. Acta Pharm Sin B. 2021;11:3433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Ji D, Lei C, Chen Y, Qiu Y, Li X, et al. Mechanistic insights into the effect of phosphorylation on Ras conformational dynamics and its interactions with cell signaling proteins. Comput Struct Biotechnol J. 2021;19:1184–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jang H, Zhang M, Nussinov R. The quaternary assembly of KRas4B with Raf-1 at the membrane. Comput Struct Biotechnol J. 2020;18:737–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tripathi S, Dsouza NR, Mathison AJ, Leverence E, Urrutia R, Zimmermann MT. Enhanced interpretation of 935 hotspot and non-hotspot RAS variants using evidence-based structural bioinformatics. Comput Struct Biotechnol J. 2021;20:117–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM, et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 2020;10:54–71.

    Article  CAS  PubMed  Google Scholar 

  52. Sarkar D, Olejniczak ET, Phan J, Coker JA, Sai J, Arnold A, et al. Discovery of sulfonamide-derived agonists of SOS1-mediated nucleotide exchange on RAS using fragment-based methods. J Med Chem. 2020;63:8325–37.

    Article  CAS  PubMed  Google Scholar 

  53. Xu K, Park D, Magis AT, Zhang J, Zhou W, Sica GL, et al. Small molecule KRAS agonist for mutant KRAS cancer therapy. Mol Cancer. 2019;18:85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 2021;11:142–57.

    Article  CAS  PubMed  Google Scholar 

  55. Hong SH, Yoo DY, Conway L, Richards-Corke KC, Parker CG, Arora PS. A Sos proteomimetic as a pan-Ras inhibitor. Proc Natl Acad Sci USA. 2021;118:e2101027118.

  56. Bery N, Miller A, Rabbitts T. A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS. Nat Commun. 2020;11:3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, et al. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun. 2021;12:4721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu S, Chen Y, Wei J, Zhao M, Ni D, He X, et al. Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators. Acta Pharm Sin B. 2021;11:1355–61.

    Article  CAS  PubMed  Google Scholar 

  59. Ni D, Wei J, He X, Rehman AU, Li X, Qiu Y, et al. Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chem Sci. 2021;12:464–76.

    Article  CAS  Google Scholar 

  60. Li X, Wang C, Peng T, Chai Z, Ni D, Liu Y, et al. Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Streptococcus thermophilus Cas9 by the anti-CRISPR protein AcrIIA6. Comput Struct Biotechnol J. 2021;19:6108–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Feng L, Lu S, Zheng Z, Chen Y, Zhao Y, Song K, et al. Identification of an allosteric hotspot for additive activation of PPARγ in antidiabetic effects. Sci Bull. 2021;66:1559–70.

    Article  CAS  Google Scholar 

  62. Ah Byun J, VanSchouwen B, Akimoto M, Melacini G. Allosteric inhibition explained through conformational ensembles sampling distinct “mixed” states. Comput Struct Biotechnol J. 2020;18:3803–18.

    Article  CAS  Google Scholar 

  63. Foutch D, Pham B, Shen T. Protein conformational switch discerned via network centrality properties. Comput Struct Biotechnol J. 2021;19:3599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partly supported by grants from the National Natural Science Foundation of China (81925034, 22077082, 91753117, and 81721004), Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-01-E00036, China), Shanghai Science and Technology Innovation (19431901600, China), Shanghai Health and Family Planning System Excellent Subject Leader and Excellent Young Medical Talents Training Program (2018BR12, China), CAMS Innovation Fund for Medical Sciences (CIFMS) (2019-I2M-5-051), and Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases.

Author information

Authors and Affiliations

Authors

Contributions

SYL and JZ conceived and designed the experiments; CXW and TTW performed the experiments and analyzed the data; KDZ provided patient samples for PDO culture; MYL and QCS visualized the data; SYL and JZ contributed reagents, materials, and analytical tools. CXW wrote the original manuscript and SYL edited and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Shao-yong Lu or Jian Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cx., Wang, Tt., Zhang, Kd. et al. Pan-KRAS inhibitors suppress proliferation through feedback regulation in pancreatic ductal adenocarcinoma. Acta Pharmacol Sin 43, 2696–2708 (2022). https://doi.org/10.1038/s41401-022-00897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-022-00897-4

Keywords

  • pancreatic ductal adenocarcinoma
  • KRAS
  • driver gene
  • BAY-293
  • organoid

Search

Quick links