Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective EZH2 inhibitor zld1039 alleviates inflammation in cisplatin-induced acute kidney injury partially by enhancing RKIP and suppressing NF-κB p65 pathway

Abstract

Enhancer of zeste homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2), is a histone lysine methyltransferase mediating trimethylation of histone H3 at lysine 27 (H3K27me3), which is a repressive marker at the transcriptional level. EZH2 sustains normal renal function and its overexpression has bad properties. Inhibition of EZH2 overexpression exerts protective effect against acute kidney injury (AKI). A small-molecule compound zld1039 has been developed as an efficient and selective EZH2 inhibitor. In this study, we evaluated the efficacy of zld1039 in the treatment of cisplatin-induced AKI in mice. Before injection of cisplatin (20 mg/kg, i.p.), mice were administered zld1039 (100, 200 mg/kg, i.g.) once, then in the following 3 days. We found that cisplatin-treated mice displayed serious AKI symptoms, evidenced by kidney dysfunction and kidney histological injury, accompanied by EZH2 upregulation in the nucleus of renal tubular epithelial cells. Administration of zld1039 dose-dependently alleviated renal dysfunction as well as the histological injury, inflammation and cell apoptosis in cisplatin-treated mice. We revealed that zld1039 administration exerted an anti-inflammatory effect in kidney of cisplatin-treated mice via H3K27me3 inhibition, raf kinase inhibitor protein (RKIP) upregulation and NF-κB p65 repression. In the cisplatin-treated mouse renal tubular epithelial (TCMK-1) cells, silencing of RKIP with siRNA did not abolish the anti-inflammatory effect of EZH2 inhibition, suggesting that RKIP was partially involved in the anti-inflammatory effect of zld1039. Collectively, EZH2 inhibition alleviates inflammation in cisplatin-induced mouse AKI via upregulating RKIP and blocking NF-κB p65 signaling in cisplatin-induced AKI. The potent and selective EZH2 inhibitor zld1039 has the potential as a promising agent for the treatment of AKI.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EZH2 inhibition by zld1039 protected renal dysfunction and alleviated histologic damage in cisplatin-induced AKI mice.
Fig. 2: EZH2 inhibition by zld1039 attenuated renal inflammation and cell apoptosis in cisplatin-induced AKI mice.
Fig. 3: EZH2 inhibition by zld1039 suppressed H3K27me3 expression in cisplatin-induced AKI mice.
Fig. 4: EZH2 inhibition by zld1039 blocked NF-κB signaling activation in cisplatin-induced AKI mice.
Fig. 5: EZH2 inhibition by zld1039 preserved the expression of RKIP in cisplatin-induced AKI mice.
Fig. 6: EZH2 inhibition by zld1039 alleviated cisplatin-induced mouse renal tubular epithelial cells apoptosis and inflammation.
Fig. 7: EZH2 inhibition by zld1039 alleviated cisplatin-induced mouse renal tubular epithelial cells apoptosis and inflammation.
Fig. 8: EZH2 inhibition by zld1039 inhibited cisplatin-induced tubular cell apoptosis and inflammation by H3K27me3-dependent manner.
Fig. 9: EZH2 inhibition by zld1039 preserved RKIP expression and inhibited the activation of NF-κB signaling in cisplatin-stimulated TCMK-1 cells.
Fig. 10: Effect of RKIP knockdown on inflammation in cisplatin-stimulated TCMK-1 cells.

References

  1. Coelho S, Cabral G, Lopes JA, Jacinto A. Renal regeneration after acute kidney injury. Nephrology. 2018;23:805–14.

    Article  PubMed  Google Scholar 

  2. Guo C, Dong G, Liang X, Dong Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol. 2019;15:220–39.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394:1949–64.

    Article  CAS  PubMed  Google Scholar 

  4. Fu Y, Tang C, Cai J, Chen G, Zhang D, Dong Z. Rodent models of AKI-CKD transition. Am J Physiol Ren Physiol. 2018;315:F1098–F1106.

    Article  CAS  Google Scholar 

  5. Wen X, Murugan R, Peng Z, Kellum JA. Pathophysiology of acute kidney injury: a new perspective. Contrib Nephrol. 2010;165:39–45.

    Article  PubMed  Google Scholar 

  6. Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382:170–9.

    Article  PubMed  Google Scholar 

  7. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–79.

    Article  CAS  PubMed  Google Scholar 

  8. Tanase DM, Gosav EM, Radu S, Costea CF, Ciocoiu M, Carauleanu A, et al. The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int J Mol Sci. 2019;20:5238.

    Article  CAS  PubMed Central  Google Scholar 

  9. Sánchez-González PD, López-Hernández FJ, López-Novoa JM, Morales AI. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol. 2011;41:803–21.

    Article  PubMed  CAS  Google Scholar 

  10. Bolisetty S, Traylor A, Joseph R, Zarjou A, Agarwal A. Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury. Am J Physiol Ren Physiol. 2015;310:F385–F394.

    Article  CAS  Google Scholar 

  11. Zhu S, Pabla N, Tang C, He L, Dong Z. DNA damage response in cisplatin-induced nephrotoxicity. Arch Toxicol. 2015;89:2197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, et al. A role for tubular necroptosis in cisplatin-induced AKI. J Am Soc Nephrol. 2015;26:2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou X, Zang X, Guan Y, Tolbert T, Zhao TC, Bayliss G, et al. Targeting enhancer of zeste homolog 2 protects against acute kidney injury. Cell Death Dis. 2018;9:1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ni J, Hou X, Wang X, Shi Y, Xu L, Zheng X, et al. 3-deazaneplanocin A protects against cisplatin-induced renal tubular cell apoptosis and acute kidney injury by restoration of E-cadherin expression. Cell Death Dis. 2019;10:355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu X, Wu Q, Li L. Functional and therapeutic significance of EZH2 in urological cancers. Oncotarget. 2017;8:38044–55.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanaki S, Shimada M. Targeting EZH2 as cancer therapy. J Biochem. 2021;170:1–4.

    Article  CAS  PubMed  Google Scholar 

  18. Kim J, Lee Y, Lu X, Song B, Fong K-W, Cao Q, et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 2018;25:2808–.e2804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nie L, Wei Y, Zhang F, Hsu Y-H, Chan L-C, Xia W, et al. CDK2-mediated site-specific phosphorylation of EZH2 drives and maintains triple-negative breast cancer. Nat Commun. 2019;10:5114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, et al. Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res. 2012;72:3091.

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Wang H, Li F, Heindl LM, He X, Yu J, et al. Long Non-coding RNA LINC-PINT Suppresses Cell Proliferation and Migration of Melanoma via Recruiting EZH2. Front Cell Dev Biol. 2019;7:350.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ramakrishnan S, Granger V, Rak M, Hu Q, Attwood K, Aquila L, et al. Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death Differ. 2019;26:2100–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou X, Xiong C, Tolbert E, Zhao TC, Bayliss G, Zhuang S. Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J. 2018;32:5976–89.

    Article  CAS  PubMed Central  Google Scholar 

  24. Shi Y, Xu L, Tao M, Fang L, Lu J, Gu H, et al. Blockade of enhancer of zeste homolog 2 alleviates renal injury associated with hyperuricemia. Am J Physiol Ren Physiol. 2018;316:F488–F505.

    Article  Google Scholar 

  25. Song X, Gao T, Wang N, Feng Q, You X, Ye T, et al. Correction: Corrigendum: Selective inhibition of EZH2 by ZLD1039 blocks H3K27methylation and leads to potent anti-tumor activity in breast cancer. Sci Rep. 2016;6:24893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sato Y, Yanagita M. Immune cells and inflammation in AKI to CKD progression. Am J Physiol Ren Physiol. 2018;315:F1501–F1512.

    Article  CAS  Google Scholar 

  27. Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu J, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215:1365–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mu W, Starmer J, Fedoriw AM, Yee D, Magnuson T. Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development. Genes Dev. 2014;28:2056–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caltabiano R, Puzzo L, Barresi V, Cardile V, Loreto C, Ragusa M, et al. Expression of Raf Kinase Inhibitor Protein (RKIP) is a predictor of uveal melanoma metastasis. Histol Histopathol. 2016;29:1325–34.

    Google Scholar 

  30. Jing SH, Gao X, Yu B, Qiao H. Raf kinase inhibitor protein (RKIP) inhibits tumor necrosis factor-α (TNF-α) induced adhesion molecules expression in vascular smooth muscle bells by suppressing (nuclear transcription factor-κB (NF-kappaB) pathway. Med Sci Monitor. 2017;23:4789–97.

    Article  Google Scholar 

  31. Späth MR, Bartram MP, Palacio-Escat N, Hoyer KJR, Debes C, Demir F, et al. The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. Kidney Int. 2019;95:333–49.

    Article  PubMed  CAS  Google Scholar 

  32. Shiraishi F, Curtis LM, Truong L, Poss K, Visner GA, Madsen K, et al. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am J Physiol Ren Physiol. 2000;278:F726–F736.

    Article  CAS  Google Scholar 

  33. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res Int. 2014;2014:967826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1β, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther. 2007;322:8–15.

    Article  CAS  PubMed  Google Scholar 

  35. Herzog C, Yang C, Holmes A, Kaushal GP. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am J Physiol Ren Physiol. 2012;303:F1239–F1250.

    Article  CAS  Google Scholar 

  36. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128:735–45.

    Article  CAS  PubMed  Google Scholar 

  37. Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 2010;7:299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gong Y, Huo L, Liu P, Sneige N, Sun X, Ueno NT, et al. Polycomb group protein EZH2 is frequently expressed in inflammatory breast cancer and is predictive of worse clinical outcome. Cancer. 2011;117:5476–84.

    Article  CAS  PubMed  Google Scholar 

  39. Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A, et al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res. 2006;12:1168–74.

    Article  CAS  PubMed  Google Scholar 

  40. Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.

    Article  CAS  PubMed  Google Scholar 

  41. Basak S, Hoffmann A. Crosstalk via the NF-kappaB signaling system. Cytokine Growth Factor Rev. 2008;19:187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ozkok A, Ravichandran K, Wang Q, Ljubanovic D, Edelstein CL. NF-κB transcriptional inhibition ameliorates cisplatin-induced acute kidney injury (AKI). Toxicol Lett. 2016;240:105–13.

    Article  CAS  PubMed  Google Scholar 

  43. Zeng L, Imamoto A, Rosner MR. Raf kinase inhibitory protein (RKIP): a physiological regulator and future therapeutic target. Expert Opin Ther Targets. 2008;12:1275–87.

    Article  CAS  PubMed  Google Scholar 

  44. Qin Q, Liu H, Shou J, Jiang Y, Yu H, Wang X. The inhibitor effect of RKIP on inflammasome activation and inflammasome-dependent diseases. Cell Mol Immunol. 2021;18:992–1004.

    Article  CAS  PubMed  Google Scholar 

  45. Lin X, Wei J, Nie J, Bai F, Zhu X, Zhuo L, et al. Inhibition of RKIP aggravates thioacetamide-induced acute liver failure in mice. Exp Ther Med. 2018;16:2992–8.

    PubMed  PubMed Central  Google Scholar 

  46. He A, Shen X, Ma Q, Cao J, von Gise A, Zhou P, et al. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev. 2012;26:37–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim E, Kim M, Woo D-H, Shin Y, Shin J, Chang N, et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell. 2013;23:839–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Biggar KK, Li SSC. Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol. 2015;16:5–17.

    Article  CAS  PubMed  Google Scholar 

  49. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–520.

    Article  CAS  PubMed  Google Scholar 

  50. Lee Shuet T, Li Z, Wu Z, Aau M, Guan P, Karuturi RKM, et al. Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol Cell. 2011;43:798–810.

    Article  PubMed  CAS  Google Scholar 

  51. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wagener N, Macher-Goeppinger S, Pritsch M, Hüsing J, Hoppe-Seyler K, Schirmacher P, et al. Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer. 2010;10:524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2020YFC2005000), the National Natural Science Foundation of China (82070711), the Science/Technology Project of Sichuan province (2020YFQ0055), and the 1.3.5 project for disciplines of excellence from West China Hospital of Sichuan University (ZYGD18027).

Author information

Authors and Affiliations

Authors

Contributions

LW, LDZ, and LM designed research, analyzed data, and drafted the article; FG, SHT, and PF contributed new reagents or analytic tools; LZL analyzed and interpretated data; HLY performed research; YL analyzed data; All authors finally approved the version to be published.

Corresponding authors

Correspondence to Li-dan Zhang or Liang Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Tao, Sh., Guo, F. et al. Selective EZH2 inhibitor zld1039 alleviates inflammation in cisplatin-induced acute kidney injury partially by enhancing RKIP and suppressing NF-κB p65 pathway. Acta Pharmacol Sin 43, 2067–2080 (2022). https://doi.org/10.1038/s41401-021-00837-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-021-00837-8

Keywords

  • acute kidney injury
  • inflammation
  • enhancer of zeste homolog 2
  • Raf kinase inhibitor protein
  • NF-κB p65
  • zld1039

This article is cited by

Search

Quick links