Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s


Ulcerative colitis (UC) is a chronic inflammatory disease of the gastrointestinal tract, which is closely related to gut barrier dysfunction. Emerging evidence shows that interleukin-22 (IL-22) derived from group 3 innate lymphoid cells (ILC3s) confers benefits on intestinal barrier, and IL-22 expression is controlled by aryl hydrocarbon receptor (AhR). Previous studies show that baicalein protects the colon from inflammatory damage. In this study we elucidated the molecular mechanisms underlying the protective effect of baicalein on intestinal barrier function in colitis mice. Mice were administered baicalein (10, 20, 40 mg·kg−1·d−1, i.g.) for 10 days; the mice freely drank 3% dextran sulfate sodium (DSS) on D1–D7 to induce colitis. We showed that baicalein administration simultaneously ameliorated gut inflammation, decreased intestinal permeability, restored tight junctions of colons possibly via promoting AhR/IL-22 pathway. Co-administration of AhR antagonist CH223191 (10 mg/kg, i.p.) partially blocked the therapeutic effects of baicalein in colitis mice, whereas AhR agonist FICZ (1 μg, i.p.) ameliorated symptoms and gut barrier function in colitis mice. In a murine lymphocyte line MNK-3, baicalein (5–20 μM) dose-dependently increased the expression of AhR downstream target protein CYP1A1, and enhanced IL-22 production through facilitating AhR nuclear translocation, these effects were greatly diminished in shAhR-MNK3 cells, suggesting that baicalein induced IL-22 production in AhR-dependent manner. To further clarify that, we constructed an in vitro system consisting of MNK-3 and Caco-2 cells, in which MNK-3 cell supernatant treated with baicalein could decrease FITC-dextran permeability and promoted the expression of tight junction proteins ZO-1 and occluding in Caco-2 cells. In conclusion, this study demonstrates that baicalein ameliorates colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s, thus providing a potential therapy for UC.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Baicalein ameliorated DSS-induced mice and the effect was dependent on AhR.
Fig. 2: Baicalein improved the intestinal barrier structure and function in colitis mice.
Fig. 3: Baicalein regulated AhR/IL-22 pathway in ILC3s of colitis mice.
Fig. 4: Baicalein activated AhR/IL-22 pathway in MNK-3 cells in vitro.
Fig. 5: Establishment of shAhR-MNK3 stable transfected cell line.
Fig. 6: Baicalein had little effect on the AhR/IL-22 pathway in shAhR-MNK3 cells in vitro.
Fig. 7: Protective effect of baicalein on Caco-2 cells was mediated by IL-22 that MNK-3 cells secreted.
Fig. 8: Mechanisms of protection against colitis by baicalein via activation of the AhR/IL-22 pathway in ILC3s.


  1. 1.

    Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology. 2019;157:647–59. e4

    Article  Google Scholar 

  2. 2.

    Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, et al. Ulcerative colitis. Nat Rev Dis Prim. 2020;6:74.

    Article  Google Scholar 

  3. 3.

    Mehandru S, Colombel JF. The intestinal barrier, an arbitrator turned provocateur in IBD. Nat Rev Gastroenterol Hepatol. 2021;18:83–4.

    Article  Google Scholar 

  4. 4.

    Eisenstein M. Gut reaction. Nature. 2018;563:S34–S5.

    CAS  Article  Google Scholar 

  5. 5.

    Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol. 2017;14:9–21.

    CAS  Article  Google Scholar 

  6. 6.

    Geng S, Cheng S, Li Y, Wen Z, Ma X, Jiang X, et al. Faecal microbiota transplantation reduces susceptibility to epithelial injury and modulates tryptophan metabolism of the microbial community in a piglet model. J Crohns Colitis. 2018;12:1359–74.

    PubMed  Google Scholar 

  7. 7.

    Lindemans CA, Calafiore M, Mertelsmann AM, O’Connor MH, Dudakov JA, Jenq RR, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560–4.

    CAS  Article  Google Scholar 

  8. 8.

    Gronke K, Hernandez PP, Zimmermann J, Klose CSN, Kofoed-Branzk M, Guendel F, et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249–53.

    CAS  Article  Google Scholar 

  9. 9.

    Qiu J, Zhou L. Aryl hydrocarbon receptor promotes RORγt+ group 3 ILCs and controls intestinal immunity and inflammation. Semin Immunopathol. 2013;35:657–70.

    CAS  Article  Google Scholar 

  10. 10.

    Gutierrez-Vazquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48:19–33.

    CAS  Article  Google Scholar 

  11. 11.

    Li J, Doty A, Glover SC. Aryl hydrocarbon receptor signaling involves in the human intestinal ILC3/ILC1 conversion in the inflamed terminal ileum of Crohn’s disease patients. Inflamm Cell Signal. 2016;3:e1404.

  12. 12.

    Yu K, Ma YH, Zhang ZC, Fan X, Li TM, Li LZ, et al. AhR activation protects intestinal epithelial barrier function through regulation of Par-6. J Mol Histol. 2018;49:449–58.

    CAS  Article  Google Scholar 

  13. 13.

    Mandal PK. Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J Comp Physiol B. 2005;175:221–30.

    CAS  Article  Google Scholar 

  14. 14.

    Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65–71.

    CAS  Article  Google Scholar 

  15. 15.

    Liu TM, Jiang XH. Studies on the absorption kinetics of baicalin and baicalein in rats’ stomachs and intestines. China J Chin Mater Med. 2006;31:999–1001.

    CAS  Google Scholar 

  16. 16.

    Shan H, Du YX, Bai HQ, Chen JX, He XL, Wang Q, et al. Progress in the development of baicalein and its clinical pharmacology study. Chin J Clin Pharmacol Ther. 2020;25:701–8.

    Google Scholar 

  17. 17.

    Sheng A, Wu L, Zhu WF. Research progress on in vitro and in vivo transformation between baicalin and baicalin in Scutellaria baicalensis Georgi. Jiangxi. J Tradit Chin Med. 2017;48:71–4.

    Google Scholar 

  18. 18.

    Zhong X, Surh YJ, Do SG, Shin E, Shim KS, Lee CK, et al. Baicalein inhibits dextran sulfate sodium-induced mouse colitis. J Cancer Prev. 2019;24:129–38.

    Article  Google Scholar 

  19. 19.

    Bae MJ, Shin HS, See HJ, Jung SY, Kwon DA, Shon DH. Baicalein induces CD4+ Foxp3+ T cells and enhances intestinal barrier function in a mouse model of food allergy. Sci Rep. 2016;6:32225.

    CAS  Article  Google Scholar 

  20. 20.

    Harada A, Sugihara K, Watanabe Y, Yamaji S, Kitamura S, Ohta S. Aryl hydrocarbon receptor ligand activity of extracts from 62 herbal medicines and effect on cytochrome p450 activity. Yakugaku Zasshi. 2015;135:1185–96.

    CAS  Article  Google Scholar 

  21. 21.

    Yang FC, Chiu PY, Chen Y, Mak TW, Chen NJ. TREM-1-dependent M1 macrophage polarization restores intestinal epithelium damaged by DSS-induced colitis by activating IL-22-producing innate lymphoid cells. J Biomed Sci. 2019;26:46.

    Article  Google Scholar 

  22. 22.

    Allan DS, Kirkham CL, Aguilar OA, Qu LC, Chen P, Fine JH, et al. An in vitro model of innate lymphoid cell function and differentiation. Mucosal Immunol. 2015;8:340–51.

    CAS  Article  Google Scholar 

  23. 23.

    Huang S, Fu Y, Xu B, Liu C, Wang Q, Luo S, et al. Wogonoside alleviates colitis by improving intestinal epithelial barrier function via the MLCK/pMLC2 pathway. Phytomedicine. 2020;68:153179.

    CAS  Article  Google Scholar 

  24. 24.

    Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun. 1979;23:403–11.

    CAS  Article  Google Scholar 

  25. 25.

    Ambrose NS, Johnson M, Burdon DW, Keighley MR. Incidence of pathogenic bacteria from mesenteric lymph nodes and ileal serosa during Crohn’s disease surgery. Br J Surg. 1984;71:623–5.

    CAS  Article  Google Scholar 

  26. 26.

    Kiely CJ, Pavli P, O’Brien CL. The microbiome of translocated bacterial populations in patients with and without inflammatory bowel disease. Intern Med J. 2018;48:1346–54.

    CAS  Article  Google Scholar 

  27. 27.

    Grootjans J, Hundscheid IH, Lenaerts K, Boonen B, Renes IB, Verheyen FK, et al. Ischaemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut. 2013;62:250–8.

    Article  Google Scholar 

  28. 28.

    Capaldo CT, Powell DN, Kalman D. Layered defense: how mucus and tight junctions seal the intestinal barrier. J Mol Med. 2017;95:927–34.

    CAS  Article  Google Scholar 

  29. 29.

    Ramos GP, Papadakis KA. Mechanisms of disease: inflammatory bowel diseases. Mayo Clin Proc. 2019;94:155–65.

    CAS  Article  Google Scholar 

  30. 30.

    Fang L, Pang Z, Shu W, Wu W, Sun M, Cong Y, et al. Anti-TNF therapy induces CD4+ T-cell production of IL-22 and promotes epithelial repairs in patients with Crohn’s disease. Inflamm Bowel Dis. 2018;24:1733–44.

    Article  Google Scholar 

  31. 31.

    Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011;141:237–48.

    CAS  Article  Google Scholar 

  32. 32.

    Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9.

    CAS  Article  Google Scholar 

  33. 33.

    Qiu J, Heller JJ, Guo XH, Chen ZME, Fish K, Fu YX, et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity. 2012;36:92–104.

    CAS  Article  Google Scholar 

  34. 34.

    Zhou L. AHR function in lymphocytes: emerging concepts. Trends Immunol. 2016;37:17–31.

    Article  Google Scholar 

  35. 35.

    Cheng S, Shen H, Zhao S, Zhang Y, Xu H, Wang L, et al. Orally administered mesoporous silica capped with the cucurbit[8]uril complex to combat colitis and improve intestinal homeostasis by targeting the gut microbiota. Nanoscale. 2020;12:15348–63.

    CAS  Article  Google Scholar 

  36. 36.

    Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22:598–605.

    CAS  Article  Google Scholar 

  37. 37.

    Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9:3294.

  38. 38.

    Kiss EA, Diefenbach A. Role of the aryl hydrocarbon receptor in controlling maintenance and functional programs of ROR gamma t+ innate lymphoid cells and intraepithelial lymphocytes. Front Immunol. 2012;3:124.

  39. 39.

    Guo XH, Qiu J, Tu T, Yang XM, Deng LF, Anders RA, et al. Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against Intestinal Infection. Immunity. 2014;40:25–39.

    CAS  Article  Google Scholar 

  40. 40.

    Villarino AV, Sciume G, Davis FP, Iwata S, Zitti B, Robinson GW, et al. Subset-and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. J Exp Med. 2017;214:2999–3014.

    CAS  Article  Google Scholar 

  41. 41.

    Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 2020;11:4457.

    CAS  Article  Google Scholar 

  42. 42.

    Bauche D, Joyce-Shaikh B, Fong J, Villarino AV, Ku KS, Jain R, et al. IL-23 and IL-2 activation of STAT5 is required for optimal IL-22 production in ILC3s during colitis. Sci Immunol. 2020; 5:eaav1080.

  43. 43.

    Wang CK, Ye Z, Kijlstra A, Zhou Y, Yang PZ. Decreased expression of the aryl hydrocarbon receptor in ocular Behcet’s disease. Mediat Inflamm. 2014;2014:195094.

    Google Scholar 

  44. 44.

    Liu C, Li Y, Chen Y, Huang S, Wang X, Luo S, et al. Baicalein restores the balance of Th17/Treg cells via aryl hydrocarbon receptor to attenuate colitis. Mediat Inflamm. 2020;2020:5918587.

    Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant No. 82074092), Characteristic Innovation Project of Guangdong Provincial Universities (Grant No. 2020KTSCX026), “Double First-class” and High-level University Discipline Collaborative Innovation Team Project of Guangzhou University of Chinese Medicine (Grant No. 2021xk81), Natural Science Foundation of Guangdong Province (Grant no. 2021A1515012219) and Guangdong Provincial Bureau of Traditional Chinese Medicine (Grant no. 20181076).

Author information




YYL performed experiments and wrote the article. XJW, YLS, QW, SWH, ZFP contributed to establishment and treatment of colitis mice model. YPC, JJL, MLZ, XQX, ZYW performed some cell studies. JYC analyzed and organized the data. LZ and XL designed ideas and edited the paper.

Corresponding authors

Correspondence to Lian Zhou or Xia Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Yy., Wang, Xj., Su, Yl. et al. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol Sin (2021).

Download citation


  • ulcerative colitis
  • baicalein
  • epithelial barrier
  • group 3 innate lymphoid cells
  • interleukin-22
  • aryl hydrocarbon receptor
  • CH223191
  • FICZ


Quick links