Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver

Abstract

The epigenetic modification of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a crucial role in cccDNA transcription and viral persistence. Interferon-α (IFN-α) is a pivotal agent against HBV cccDNA. However, the mechanism by which IFN-α modulates the epigenetic regulation of cccDNA remains poorly understood. In this study, we report that IFN-α2b enhances the histone deacetylase 3 (HDAC3)-mediated de-2-hydroxyisobutyrylation of histone H4 lysine 8 (H4K8) on HBV cccDNA minichromosome to restrict the cccDNA transcription in liver. By screening acetyltransferases and deacetylases, we identified that HDAC3 was an effective restrictor of HBV transcription and replication. Moreover, we found that HDAC3 was able to mediate the de-2-hydroxyisobutyrylation of H4K8 in HBV-expressing hepatoma cells. Then, the 2-hydroxyisobutyrylation of histone H4K8 (H4K8hib) was identified on the HBV cccDNA minichromosome, promoting the HBV transcription and replication. The H4K8hib was regulated by HDAC3 depending on its deacetylase domain in the system. The low level of HDAC3 and high level of H4K8hib were observed in the liver tissues from HBV-infected human liver-chimeric mice. The levels of H4K8hib on HBV cccDNA minichromosome were significantly elevated in the liver biopsy specimens from clinical hepatitis B patients, which was consistent with the high transcriptional activity of cccDNA. Strikingly, IFN-α2b effectively facilitated the histone H4K8 de-2-hydroxyisobutyrylation mediated by HDAC3 on the HBV cccDNA minichromosome in primary human hepatocytes and hepatoma cells, leading to the inhibition of HBV transcription and replication. Our finding provides new insights into the mechanism by which IFN-α modulates the epigenetic regulation of HBV cccDNA minichromosome.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: HDAC3 restricts the cccDNA transcription and HBV replication.
Fig. 2: HDAC3-mediated 2-hydroxyisobutyrylation of histone H4K8 is anchored on the HBV cccDNA minichromosome.
Fig. 3: H4K8 2-hydroxyisobutyrylation contributes to the cccDNA transcription and HBV replication.
Fig. 4: HDAC3 is responsible for the de-2-hydroxyisobutyrylation of H4K8 on cccDNA minichromosome.
Fig. 5: IFN-α2b confers the 2-hydroxyisobutyrylation of H4K8 on the HBV cccDNA minichromosome.
Fig. 6: IFN-α2b restricts cccDNA transcription and HBV replication by inducing de-2-hydroxyisobutyrylation of H4K8 on the HBV cccDNA minichromosome.

References

  1. 1.

    Tang LSY, Covert E, Wilson E, Kottilil S. Chronic hepatitis B infection: a review. JAMA. 2018;319:1802–13.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Guidotti LG, Inverso D, Sironi L, Di Lucia P, Fioravanti J, Ganzer L, et al. Immunosurveillance of the liver by intravascular effector CD8+ T cells. Cell. 2015;161:486–500.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Chisari FV, Mason WS, Seeger C. Virology. comment on “specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA”. Science. 2014;344:1237.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Faria LC, Gigou M, Roque-Afonso AM, Sebagh M, Roche B, Fallot G, et al. Hepatocellular carcinoma is associated with an increased risk of hepatitis B virus recurrence after liver transplantation. Gastroenterology. 2008;134:1890–9. quiz 2155.

    PubMed  Article  Google Scholar 

  5. 5.

    Bock CT, Schranz P, Schröder CH, Zentgraf H. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes. 1994;8:215–29.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Newbold JE, Xin H, Tencza M, Sherman G, Dean J, Bowden S, et al. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol. 1995;69:3350–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51:581–92.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Bock CT, Schwinn S, Locarnini S, Fyfe J, Manns MP, Trautwein C, et al. Structural organization of the hepatitis B virus minichromosome. J Mol Biol. 2001;307:183–96.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Stark George R, Darnell James E. The JAK-STAT pathway at twenty. Immunity. 2012;36:503–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8:559–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, et al. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012;122:529–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Liu F, Campagna M, Qi Y, Zhao X, Guo F, Xu C, et al. Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLoS Pathog. 2013;9:e1003613.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Yuan Y, Yuan H, Yang G, Yun H, Zhao M, Liu Z, et al. IFN-α confers epigenetic regulation of HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Clin Epigenet. 2020;12:135.

    CAS  Article  Google Scholar 

  15. 15.

    Hong X, Kim ES, Guo H. Epigenetic regulation of hepatitis B virus covalently closed circular DNA: Implications for epigenetic therapy against chronic hepatitis B. Hepatology. 2017;66:2066–77.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Park IY, Sohn BH, Yu E, Suh DJ, Chung YH, Lee JH, et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology. 2007;132:1476–94.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Zhang W, Chen J, Wu M, Zhang X, Zhang M, Yue L, et al. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatology. 2017;66:398–415.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Belloni L, Pollicino T, De Nicola F, Guerrieri F, Raffa G, Fanciulli M, et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc Natl Acad Sci USA. 2009;106:19975–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol. 2019;20:102–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Pollicino T, Belloni L, Raffa G, Pediconi N, Squadrito G, Raimondo G, et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology. 2006;130:823–37.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Rivière L, Gerossier L, Ducroux A, Dion S, Deng Q, Michel ML, et al. HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J Hepatol. 2015;63:1093–102.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Yin D, Jiang N, Zhang Y, Wang D, Sang X, Feng Y, et al. Global lysine crotonylation and 2-hydroxyisobutyrylation in phenotypically different toxoplasma gondii parasites. Mol Cell Proteom. 2019;18:2207–24.

    CAS  Article  Google Scholar 

  23. 23.

    Wang ZY, Li YQ, Guo ZW, Zhou XH, Lu MD, Xue TC, et al. ERK1/2-HNF4α axis is involved in epigallocatechin-3-gallate inhibition of HBV replication. Acta Pharmacol Sin. 2020;41:278–85.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hantz O, Parent R, Durantel D, Gripon P, Guguen-Guillouzo C, Zoulim F. Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J Gen Virol. 2009;90:127–35.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife. 2012;1:e00049.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Ni Y, Urban S. Hepatitis B virus infection of HepaRG cells, HepaRG-hNTCP cells, and primary human hepatocytes. Methods Mol Biol. 2017;1540:15–25.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Yang G, Feng J, Liu Y, Zhao M, Yuan Y, Yuan H, et al. HAT1 signaling confers to assembly and epigenetic regulation of HBV cccDNA minichromosome. Theranostics. 2019;9:7345–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343:1221–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Gao Y, Feng J, Yang G, Zhang S, Liu Y, Bu Y, et al. Hepatitis B virus X protein-elevated MSL2 modulates hepatitis B virus covalently closed circular DNA by inducing degradation of APOBEC3B to enhance hepatocarcinogenesis. Hepatology. 2017;66:1413–29.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Xia Y, Stadler D, Lucifora J, Reisinger F, Webb D, Hösel M, et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology. 2016;150:194–205.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Verrier ER, Yim SA, Heydmann L, El Saghire H, Bach C, Turon-Lagot V, et al. Hepatitis B virus evasion from cyclic guanosine monophosphate-adenosine monophosphate synthase sensing in human hepatocytes. Hepatology. 2018;68:1695–709.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Li Z, Wu J, Wang L, Han W, Yu J, Liu X, et al. Generation of qualified clinical-grade functional hepatocytes from human embryonic stem cells in chemically defined conditions. Cell Death Dis. 2019;10:763.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Feng J, Yang G, Liu Y, Gao Y, Zhao M, Bu Y, et al. LncRNA PCNAP1 modulates hepatitis B virus replication and enhances tumor growth of liver cancer. Theranostics. 2019;9:5227–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Yang Y, Zhao X, Wang Z, Shu W, Li L, Li Y, et al. Nuclear sensor interferon-inducible protein 16 inhibits the function of hepatitis B virus covalently closed circular DNA by integrating innate immune activation and epigenetic suppression. Hepatology. 2020;71:1154–69.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Ortega E, Rengachari S, Ibrahim Z, Hoghoughi N, Gaucher J, Holehouse AS, et al. Transcription factor dimerization activates the p300 acetyltransferase. Nature. 2018;562:538–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Kim JH, Kim B, Cai L, Choi HJ, Ohgi KA, Tran C, et al. Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature. 2005;434:921–6.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Nagarajan S, Rao SV, Sutton J, Cheeseman D, Dunn S, Papachristou EK, et al. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat Genet. 2020;52:187–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell. 2013;52:769–82.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol. 2014;10:365–70.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Huang H, Luo Z, Qi S, Huang J, Xu P, Wang X, et al. Landscape of the regulatory elements for lysine 2-hydroxyisobutyrylation pathway. Cell Res. 2018;28:111–25.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Chen J, Li Y, Lai F, Wang Y, Sutter K, Dittmer U, et al. Functional comparison of interferon-α subtypes reveals potent hepatitis B virus suppression by a concerted action of interferon-α and interferon-γ signaling. Hepatology. 2021;73:486–502.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Bonvin M, Achermann F, Greeve I, Stroka D, Keogh A, Inderbitzin D, et al. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology. 2006;43:1364–74.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Zhang D, Wang Y, Zhang HY, Jiao FZ, Zhang WB, Wang LW, et al. Histone deacetylases and acetylated histone H3 are involved in the process of hepatitis B virus DNA replication. Life Sci. 2019;223:1–8.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Prescott NA, Bram Y, Schwartz RE, David Y. Targeting hepatitis B virus covalently closed circular DNA and hepatitis B virus X protein: recent advances and new approaches. ACS Infect Dis. 2019;5:1657–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Yuan Y, Zhao K, Yao Y, Liu C, Chen Y, Li J, et al. HDAC11 restricts HBV replication through epigenetic repression of cccDNA transcription. Antivir Res. 2019;172:104619.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Tropberger P, Mercier A, Robinson M, Zhong W, Ganem DE, Holdorf M. Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. Proc Natl Acad Sci USA. 2015;112:E5715–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 31670769).

Author information

Affiliations

Authors

Contributions

XDZ and LNZ conceived the project, designed research, analyzed the data, and wrote the paper. LNZ, HFY, YFW, HLY, WZ, YY, YG, MZ, and LYF performed the experiments. All authors have approved the final version of the paper.

Corresponding author

Correspondence to Xiao-dong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Ln., Yuan, Hf., Wang, Yf. et al. IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin (2021). https://doi.org/10.1038/s41401-021-00765-7

Download citation

Keywords

  • HBV
  • cccDNA minichromosome
  • IFN-α
  • epigenetic regulation
  • HDAC3
  • 2-hydroxyisobutyrylation

Search

Quick links