Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Paris saponin VII, a Hippo pathway activator, induces autophagy and exhibits therapeutic potential against human breast cancer cells

Abstract

Dysregulation of the Hippo signaling pathway seen in many types of cancer is usually associated with a poor prognosis. Paris saponin VII (PSVII) is a steroid saponin isolated from traditional Chinese herbs with therapeutic action against various human cancers. In this study we investigated the effects of PSVII on human breast cancer (BC) cells and its anticancer mechanisms. We showed that PSVII concentration-dependently inhibited the proliferation of MDA-MB-231, MDA-MB-436 and MCF-7 BC cell lines with IC50 values of 3.16, 3.45, and 2.86 μM, respectively, and suppressed their colony formation. PSVII (1.2–1.8 μM) induced caspase-dependent apoptosis in the BC cell lines. PSVII treatment also induced autophagy and promoted autophagic flux in the BC cell lines. PSVII treatment decreased the expression and nuclear translocation of Yes-associated protein (YAP), a downstream transcriptional effector in the Hippo signaling pathway; overexpression of YAP markedly attenuated PSVII-induced autophagy. PSVII-induced, YAP-mediated autophagy was associated with increased active form of LATS1, an upstream effector of YAP. The activation of LATS1 was involved the participation of multiple proteins (including MST2, MOB1, and LATS1 itself) in an MST2-dependent sequential activation cascade. We further revealed that PSVII promoted the binding of LATS1 with MST2 and MOB1, and activated LATS1 in the BC cell lines. Molecular docking showed that PSVII directly bound to the MST2-MOB1-LATS1 ternary complex. Microscale thermophoresis analysis and drug affinity responsive targeting stability assay confirmed the high affinity between PSVII and the MST2-MOB1-LATS1 ternary complex. In mice bearing MDA-MB-231 cell xenograft, administration of PSVII (1.5 mg/kg, ip, 4 times/week, for 4 weeks) significantly suppressed the tumor growth with increased pLATS1, LC3-II and Beclin 1 levels and decreased YAP, p62 and Ki67 levels in the tumor tissue. Overall, this study demonstrates that PSVII is a novel and direct Hippo activator that has great potential in the treatment of BC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chemical structure of PSVII.
Fig. 2: Effect of PSVII in BC cells.
Fig. 3: PSVII induces the apoptosis of BC cells.
Fig. 4: PSVII induces autophagosome formation and promotes autophagic flux in BC cells.
Fig. 5: PSVII induces autophagy via Hippo signaling pathway activation in BC cells.
Fig. 6: PSVII directly binds to the MST2-MOB1-LATS1 ternary complex to activate LATS1.
Fig. 7: Schematic representation of the mechanism of action of PSVII.
Fig. 8: PSVII inhibits tumor growth in murine models and shows favorable pharmacokinetic profiles.

References

  1. 1.

    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Article  Google Scholar 

  2. 2.

    Zeng H, Chen W, Zheng R, Zhang S, Ji JS, Zou X, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health. 2018;6:e555–e67.

    PubMed  Article  Google Scholar 

  3. 3.

    Ehsan H, Imtiaz H, Sana MK, Sheikh MM, Wahab A. Relapsed breast cancer complicated by isolated brain metastasis. Clin Case Rep. 2021;9:887–90.

    PubMed  Article  Google Scholar 

  4. 4.

    Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Cao W, Li J, Yang K, Cao D. An overview of autophagy: mechanism, regulation and research progress. Bull Cancer. 2021;108:304–22.

    PubMed  Article  Google Scholar 

  6. 6.

    Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, et al. Autophagy in cancer: regulation by small molecules. Trends Pharmacol Sci. 2018;39:1021–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Russo M, Russo GL. Autophagy inducers in cancer. Biochem Pharmacol. 2018;153:51–61.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Takahashi A, Kimura F, Yamanaka A, Takebayashi A, Kita N, Takahashi K, et al. Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis. Cancer Cell Int. 2014;14:53.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Fu H, Wang C, Yang D, Wei Z, Xu J, Hu Z, et al. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J Cell Physiol. 2018;233:4634–42.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Bi Y, Shen C, Li C, Liu Y, Gao D, Shi C, et al. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. Tumour Biol. 2016;37:3549–60.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Si Y, Ji X, Cao X, Dai X, Xu L, Zhao H, et al. Src inhibits the Hippo tumor suppressor pathway through tyrosine phosphorylation of Lats1. Cancer Res. 2017;77:4868–80.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Han Y. Analysis of the role of the Hippo pathway in cancer. J Transl Med. 2019;17:116.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 2020;19:480–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Cao J, Huang W. Two faces of Hippo: activate or suppress the Hippo pathway in cancer. Anticancer Drugs. 2017;28:1079–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Zheng Y, Pan D. The Hippo signaling pathway in development and disease. Dev Cell. 2019;50:264–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Calses PC, Crawford JJ, Lill JR, Dey A. Hippo pathway in cancer: aberrant regulation and therapeutic opportunities. Trends Cancer. 2019;5:297–307.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Wu L, Yang X. Targeting the Hippo pathway for breast cancer therapy. Cancers (Basel). 2018;10:422.

    CAS  Article  Google Scholar 

  18. 18.

    Wang BL, Zhang H, Hao XC, Ge ZK, Qiu JR, Zhao YH. Research progress on pharmacological action of Trillium tschonoskii Maxim. J Tradit Chin Med. 2018;40:478–81.

    Google Scholar 

  19. 19.

    Wang BL, Hao XC, Ge ZK, Qiu JR, Zhang H, Zhao YH. Study on HPLC fingerprint of Trillium tschonoskii Maxim. Hubei J Tradit Chin Med. 2018;37:225–8.

    Google Scholar 

  20. 20.

    Lin X, Gajendran B, Varier KM, Liu W, Song J, Rao Q, et al. Paris Saponin VII induces apoptosis and cell cycle arrest in erythroleukemia cells by a mitochondrial membrane signaling pathway. Anticancer Agents Med Chem. 2020;21:498–507.

    Article  CAS  Google Scholar 

  21. 21.

    Tang GE, Niu YX, Li Y, Wu CY, Wang XY, Zhang J. Paris saponin VII enhanced the sensitivity of HepG2/ADR cells to ADR via modulation of PI3K/AKT/MAPK signaling pathway. Kaohsiung J Med Sci. 2020;36:98–106.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Li Y, Sun Y, Fan L, Zhang F, Meng J, Han J, et al. Paris saponin VII inhibits growth of colorectal cancer cells through Ras signaling pathway. Biochem Pharmacol. 2014;88:150–7.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Zhang W, Zhang D, Ma X, Liu Z, Li F, Wu D. Paris saponin VII suppressed the growth of human cervical cancer Hela cells. Eur J Med Res. 2014;19:41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Fan L, Li Y, Sun Y, Han J, Yue Z, Meng J, et al. Paris saponin VII inhibits the migration and invasion in human A549 lung cancer cells. Phytother Res. 2015;29:1366–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Cheng G, Gao F, Sun X, Bi H, Zhu Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP2/9 production via the p38 MAPK signaling pathway. Mol Med Rep. 2016;14:3199–205.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Zhang Y, Huang P, Liu X, Xiang Y, Zhang T, Wu Y, et al. Polyphyllin I inhibits growth and invasion of cisplatin-resistant gastric cancer cells by partially inhibiting CIP2A/PP2A/Akt signaling axis. J Pharm Sci. 2018;137:305–12.

    CAS  Article  Google Scholar 

  27. 27.

    Ma WJ, Xiang YC, Yang R, Zhang T, Xu JX, Wu YZ, et al. Cucurbitacin B induces inhibitory effects via the CIP2A/PP2A/C-KIT signaling axis in t(8;21) acute myeloid leukemia. J Pharm Sci. 2019;139:304–10.

    CAS  Article  Google Scholar 

  28. 28.

    Liu PF, Xiang YC, Liu XW, Zhang T, Yang R, Chen S, et al. Cucurbitacin B induces the lysosomal degradation of EGFR and suppresses the CIP2A/PP2A/Akt signaling axis in gefitinib-resistant non-small cell lung cancer. Molecules. 2019;24:647.

    CAS  PubMed Central  Article  Google Scholar 

  29. 29.

    Si Y, Wang J, Liu X, Zhou T, Xiang Y, Zhang T, et al. Ethoxysanguinarine, a novel direct activator of AMP-activated protein kinase, induces autophagy and exhibits therapeutic potential in breast cancer cells. Front Pharmacol. 2019;10:1503.

    CAS  Article  Google Scholar 

  30. 30.

    Wang Q, Zhang Q, Luan S, Yang K, Zheng M, Li K, et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem. 2019;93:103315.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Choi J, Lee YJ, Yoon YJ, Kim CH, Park SJ, Kim SY, et al. Pimozide suppresses cancer cell migration and tumor metastasis through binding to ARPC2, a subunit of the Arp2/3 complex. Cancer Sci. 2019;110:3788–801.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Lee YK, Jun YW, Choi HE, Huh YH, Kaang BK, Jang DJ, et al. Development of LC3/GABARAP sensors containing a LIR and a hydrophobic domain to monitor autophagy. EMBO J. 2017;36:1100–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 2009;452:181–97.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Lv X, Li K, Hu Z. Autophagy and pulmonary fibrosis. Adv Exp Med Biol. 2020;1207:569–79.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Ni L, Zheng Y, Hara M, Pan D, Luo X. Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling. Genes Dev. 2015;29:1416–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Zhao YZ, Zhang YY, Han H, Fan RP, Hu Y, Zhong L, et al. Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Med. 2018;16:732–48.

    PubMed  Google Scholar 

  37. 37.

    Man S, Gao W, Zhang Y, Huang L, Liu C. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia 2010;81:703–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Xiang YC, Shen J, Si Y, Liu XW, Zhang L, Wen J, et al. Paris saponin VII, a direct activator of AMPK, induces autophagy and exhibits therapeutic potential in non-small-cell lung cancer. Chin J Nat Med. 2021;19:195–204.

    PubMed  Google Scholar 

  39. 39.

    Wu Y, Si Y, Xiang Y, Zhou T, Liu X, Wu M, et al. Polyphyllin I activates AMPK to suppress the growth of non-small-cell lung cancer via induction of autophagy. Arch Biochem Biophys. 2020;687:108285.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Yin X, Qu C, Li Z, Zhai Y, Cao S, Lin L, et al. Simultaneous determination and pharmacokinetic study of polyphyllin I, polyphyllin II, polyphyllin VI and polyphyllin VII in beagle dog plasma after oral administration of Rhizoma Paridis extracts by LC-MS-MS. Biomed Chromatogr. 2013;27:343–8.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev. 2017;277:76–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Shen HM, Codogno P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy. 2011;7:457–65.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Feng X, Zhou J, Li J, Hou X, Li L, Chen Y, et al. Tubeimoside I induces accumulation of impaired autophagolysosome against cervical cancer cells by both initiating autophagy and inhibiting lysosomal function. Cell Death Dis. 2018;9:1117.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Liu K, Ren T, Huang Y, Sun K, Bao X, Wang S, et al. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis. 2017;8:e3015.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Tang F, Christofori G. The cross-talk between the Hippo signaling pathway and autophagy:implications on physiology and cancer. Cell Cycle. 2020;19:2563–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S, et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol. 2015;17:500–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Totaro A, Zhuang Q, Panciera T, Battilana G, Azzolin L, Brumana G, et al. Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proc Natl Acad Sci USA. 2019;116:17848–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, et al. Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol Cell. 2015;57:55–68.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Gan W, Dai X, Dai X, Xie J, Yin S, Zhu J, et al. LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nat Cell Biol. 2020;22:246–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010;1:100.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Chang J, Kim Y, Kwon HJ. Advances in identification and validation of protein targets of natural products without chemical modification. Nat Prod Rep. 2016;33:719–30.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos 82072928 and 81802387), the Foundation for Innovative Research Group of Hubei Provincial Department of Science and Technology (No. 2021CFA071), the Foundation for Innovative Research Team of Hubei Provincial Department of Education (No. T201915), the Principal Investigator Grant of Hubei University of Medicine (No. HBMUPI201806), the Innovative Research Program for Graduates (No. YC2021004), the Faculty Development Grants from Hubei University of Medicine (No. 2018QDJZR03), the Scientific and Technological Project of Shiyan City of Hubei Province (Nos 21Y08 and 21Y09), and the National Training Program of Innovation and Entrepreneurship for Undergraduates (Nos 202110929001 and 202110929002).

Author information

Affiliations

Authors

Contributions

YL conceived and planned the experiments. YCX, PP, XWL, XJ, JS, TZ, LZ, FW, YLR, QQY, and HZZ performed the experiment and analyzed the data. YL and YS wrote the paper.

Corresponding authors

Correspondence to Yuan Si or Ying Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, Yc., Peng, P., Liu, Xw. et al. Paris saponin VII, a Hippo pathway activator, induces autophagy and exhibits therapeutic potential against human breast cancer cells. Acta Pharmacol Sin (2021). https://doi.org/10.1038/s41401-021-00755-9

Download citation

Keywords

  • anti cancer drug pharmacology
  • autophagy
  • Chinese traditional medicine
  • molecular docking
  • Breast cancer
  • Hippo pathway activator

Search

Quick links