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Sulforaphane activates anti-inflammatory microglia,
modulating stress resilience associated with BDNF
transcription
Rui Tang1,2, Qian-qian Cao1, Sheng-wei Hu3, Lu-juan He1, Peng-fei Du4, Gang Chen5, Rao Fu6, Fei Xiao7, Yi-rong Sun8,
Ji-chun Zhang1 and Qi Qi3

Sulforaphane (SFN) is an organic isothiocyanate and an NF-E2-related factor-2 (Nrf2) inducer that exerts prophylactic effects on
depression-like behavior in mice. However, the underlying mechanisms remain poorly understood. Brain-derived neurotrophic
factor (BDNF), a neurotrophin, is widely accepted for its antidepressant effects and role in stress resilience. Here, we show that SFN
confers stress resilience via BDNF upregulation and changes in abnormal dendritic spine morphology in stressed mice, which is
accompanied by rectifying the irregular levels of inflammatory cytokines. Mechanistic studies demonstrated that SFN activated Nrf2
to promote BDNF transcription by binding to the exon I promoter, which is associated with increased Nrf2, and decreased methyl-
CpG binding protein-2 (MeCP2), a transcriptional suppressor of BDNF, in BV2 microglial cells. Furthermore, SFN inhibited the pro-
inflammatory phenotype and activated the anti-inflammatory phenotype of microglia, which was associated with increased Nrf2
and decreased MeCP2 expression in microglia of stressed mice. Hence, our findings support that Nrf2 induces BDNF transcription
via upregulation of Nrf2 and downregulation of MeCP2 in microglia, which is associated with changes in the morphology of
damaged dendritic spines in stressed mice. Meanwhile, the data presented here provide evidence for the application of SFN as a
candidate for the prevention and intervention of depression.
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INTRODUCTION
Sulforaphane (SFN, 1-isothiocyanato-4-methylsulfinylbutane, Fig. 1a),
an organosulfur compound found in cruciferous vegetables, such as
broccoli, brussels sprouts, and cabbage, is an NF-E2-related factor-2
(Nrf2) inducer. It has been demonstrated that SFN exerts antioxidant
and anti-inflammatory effects by upregulating Nrf2-induced transcrip-
tion of phase II detoxification enzymes and antioxidant proteins of the
Nrf2 [1–3]. Brain-derived neurotrophic factor (BDNF) is a neurotrophin
that plays a crucial role in neuronal survival and growth. Convergent
evidence indicates that altered BDNF levels and function are
correlated with the pathogenesis of depression [4–6]. Our previous
studies demonstrated that intraperitoneal injection of SFN exerts
antidepressant effects in lipopolysaccharide (LPS) and chronic social
defeat stress (CSDS) models of depression by activating Nrf2 and
BDNF signaling pathways [7]. Moreover, dietary intake of glucor-
aphanin (a precursor of SFN) also displays antidepressant effects in
the CSDS mouse model by activating the BDNF signaling pathway [8].
Recently, our group revealed that Nrf2 activates BDNF, contributing to
antidepressant-like action in rodents [9]. However, the mechanisms by

which SFN regulates BDNF resulting in its antidepressant effects have
not been well defined.
Microglia are immune cells in the central nervous system that

play an important role in maintaining normal brain function [10].
Accumulating evidence has demonstrated that microglia are
associated with a variety of neuropsychiatric diseases, including
depression, through the release of inflammatory cytokines,
regulation of cell apoptosis via phagocytosis, and synaptic
plasticity [11, 12]. It has been established that microglia have a
dual state of pro-inflammatory and anti-inflammatory phenotypes
depending on the microenvironment [13–15]. Microglia with an
anti-inflammatory phenotype regulate various anti-inflammatory
factors, leading to neuronal protection [13, 16–18]. Nrf2 is a key
transcription factor that regulates antioxidant and anti-
inflammatory responses. Therefore, it is interesting to investigate
the relationship between the antidepressant effects of SFN and
microglial function.
Here, we reveal that SFN stimulates BDNF transcription through

Nrf2 binding to its exon I promoter, which is associated with
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increased Nrf2 and decreased methyl-CpG binding protein-2
(MeCP2, a transcription suppressor of BDNF) in BV2 cells. Further
studies demonstrated that mice with depression-like behavior
displayed downregulated Nrf2 and enhanced MeCP2 in microglia,
which can be reversed by SFN treatment, endowing stress
resilience. SFN inhibits the pro-inflammatory phenotype and
activates the anti-inflammatory phenotype of microglia in stressed
mice. Collectively, our findings support that SFN confers stress
resilience via induction of BDNF in stressed mice, which is
associated with the upregulation of Nrf2 and downregulation of
MeCP2 in microglia, providing compelling evidence for SFN
application as a candidate for the treatment of depression.

MATERIALS AND METHODS
Mice, cell lines, antibody, and drug treatment
Male adult C57BL/6 mice (8 weeks old, 20–25 g each, Guang-
dong Experimental Animal Center), CD1 mice (14 weeks old,
40–45 g each, Guangdong Experimental Animal Center), and
male adult Thy1-Yellow fluorescent protein (YFP) mice were
used in the experiments. The animals were housed under a
controlled temperature and kept on a 12-h light/dark cycle
(lights on between 07:00 and 19:00), with ad libitum access to
food and water. The study protocol was approved by the
Institutional Animal Care and Use Committee of Jinan University.
All experiments were carried out in accordance with the Guide
for Animal Experimentation of Jinan University. BV2 microglial
cells were cultured in high-glucose Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum (Excell Bio.,
Taicang, China) and penicillin (100 units/mL)-streptomycin
(100 μg/mL) (Hyclone). The cells were incubated at 37 °C in a
humidified incubator containing 5% CO2. The following anti-
bodies were used for the experiments: Nrf2 (ab137550), MeCP2
(ab2828), BDNF (ab108319), IBA1 (GTX632426), iNOS (Invitrogen
PA3-030A), and Arginase1 (cst 93668S). Beta-actin antibody was
purchased from EarthOx. LPS was purchased from Sigma-Aldrich
(LPS, 1 μg/mL for BV2 cells; L-4130, serotype 0111:B4, Sigma-
Aldrich). SFN was purchased from MedChemExpress (Shanghai,
China). SFN (10 mg/kg, dissolved in distilled water containing
10% corn oil) was administered intraperitoneally (i.p.) to mice
before exposure to social defeat stress for 30 min over 10 days.
The doses of LPS and SFN were selected according to previous
studies [8, 19].

Chronic social defeat stress (CSDS) modeling
The chronic social defeat procedure was performed as previously
reported [20]. C57BL/6 mice or Thy1-YFP mice were defeated by
different CD1 mice for 10 min for a total of 10 days. Following the
social defeat session, CD1 mice and C57BL/6 mice or Thy1-YFP
mice were housed in half of the cage for 24 h using a perforated
Plexiglas divider, which allowed visual, olfactory, and auditory
contacts over 24 h. C57BL/6 mice or Thy1-YFP mice were raised
separately after the end of the last session. The social interaction
test (SIT) was performed to examine the mice that were
accordingly susceptible and resistant.
For the SIT, an open box (42 cm × 42 cm) with an interaction

zone that included a mesh-plastic target box (10 cm × 4.5 cm) and
two opposing corner zones was employed. The two parts were
used for this test (no social or social targets). For the no social
target, the test mouse was placed into an open field arena for 2.5
min with no social target (no CD1 mouse) in the mesh-plastic
target box. After the no social target test, the mouse was placed
into the open field arena again in the second 2.5 min with a social
target (a novel CD1 mouse) in the mesh-plastic target box. The
residence time in the interaction zone was counted using the
stopwatch, and the time of ratio for social target, and no social
target was calculated accordingly. Approximately 70% of mice
were susceptible to social defeat stress.

Behavioral tests
The behavioral tests included the locomotion test, forced
swimming test (FST), and 1% sucrose preference test (SPT). The
locomotion test, FST, and SPT were performed as previously
reported [21]. The locomotor activities of the mice were analyzed
using Ethovision XT 14.0 software (Noldus). The cumulative
exercise was recorded for 60 min. For the FST, the mice were
placed individually in a cylinder (diameter: 23 cm; height: 31 cm)
containing 15 cm of water and maintained at 23 ± 1 °C. The mice
were monitored using a video tracking system (EthoVision XT 14.0)
for 6 min. For the SPT, mice were habituated to a 1% sucrose
solution for 48 h before the test day, and then the mice were
deprived of water and food for 4 h followed by a preference test
with water and 1% sucrose for 1 h. Bottles containing water and
sucrose were weighed before and at the end of this period to
calculate the sucrose preference (%).

Luciferase reporter assay
The luciferase reporter assay was performed as described
previously [22, 23]. BV2 cells were transfected with pRL-TK Renilla
luciferase plasmid and BDNF exon I, II, or IV luciferase reporter
plasmid in 6-wells plates, followed by treatment with SFN or
siRNA-Nrf2. Following transfection for 24 h, the cells were
collected and subjected to analysis using a dual-luciferase reporter
assay kit (Promega, Madison, USA) according to the manufac-
turer’s instructions.

Chromatin immunoprecipitation (ChIP) assay
ChIP was performed as described previously [22, 23]. Cells were
subjected to ChIP assay according to the manual of the
SimpleChIP® Enzymatic Chromatin IP Kit (Cell Signaling). Specifi-
cally, 7.5 μg of Nrf2 antibody (Abcam) was added to the
homogenate of the cell lysates. The mixture was incubated
overnight at 4 °C. The washing, elution, and reverse cross-linking
of free DNA were performed according to the manufacturer’s
protocol. BDNF exon I-specific primers were used to amplify the
promoter region. The primer sequences were: forward 5′-GG
CTTCTGTGTGCGTGAATTTGC-3′; reverse 5′-AAAGTGGGTGGGAGTC-
CACGAG-3′. The PCR amplicons were separated on a 2% agarose
gel after 35 cycles of PCR (denaturation at 95 °C for 30 s, annealing
at 58 °C for 30 s, and extension at 72 °C for 30 s).

Immunofluorescence staining
Mice were anesthetized with sodium pentobarbital and perfused
transcardially with 10mL of isotonic saline, followed by 40mL of
ice-cold 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4).
Brain samples were collected after perfusion and postfixed
overnight at 4 °C. Serial coronal sections (50 μm) of brain tissue
were cut in ice-cold, 0.01 M phosphate-buffered saline (pH 7.5)
using a vibrating blade microtome (VT1000S, Leica Microsystems
AG, Wetzlar, Germany). For staining, the cells or mouse brain
sections were incubated with 3% hydrogen peroxide at room
temperature for 10 min after fixation with 4% paraformaldehyde.
Then, the sections were blocked with blocking solution for 1 h and
incubated with primary antibodies overnight. The next day, Alexa
Fluor 488- or 568- conjugated isotype-specific secondary anti-
bodies were incubated for 1 h at room temperature. Images were
collected using an Olympus fluorescence microscope (Olympus
BX53, Tokyo, Japan). IBA1, iNOS, and Arginine1 immunoreactivity
or Nrf2 and MeCP2 fluorescence intensity were quantified in the
anterior regions (0.018 mm2) of each brain section using Image J.

Enzyme-linked immunosorbent assay
Blood samples were obtained via cardiac puncture 14 days after
the CSDS. Serum samples were obtained from blood by
centrifugation at 2000 × g for 20 min. The samples were diluted
ten-fold with an enzyme-linked immunosorbent assay (ELISA)
diluent solution. Levels of tumor necrosis factor-α (TNF-α),
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interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10),
and interleukin-4 (IL-4) were measured using a Ready-SET-Go
ELISA kit (eBioscience, San Diego, USA) according to the
manufacturer’s instructions.

Western blotting assay
Cells and mouse brain samples were lysed in RIPA buffer (20 mM
pH 7.5 Tris-HCl, 150mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1%
Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-glyceropho-
sphate, 1 mM Na3VO4, 1 μg/mL leupeptin, and 1mM phenyl-
methylsulfonyl fluoride) on ice for 30 min. The cell lysates or brain
lysates were then centrifuged at 13,000 × g for 30 min at 4 °C. The
supernatant was collected, and protein concentrations were
determined using a Coomassie Brilliant Blue protein assay kit
(Bio-Rad). The same amount of supernatant was boiled in SDS
loading buffer. Protein samples (20 µg) were resolved on 7.5%,
10%, or 15% polyacrylamide gels, which were selected according
to the molecular weights of the target proteins. After SDS-PAGE,
the proteins were transferred to a polyvinylidene difluoride
membrane, blocked with 2% BSA for 1 h at room temperature,
and then incubated with primary antibody (the concentration was
chosen according to the manufacturer’s instructions) at 4 °C
overnight. The next day, the blots were incubated with an anti-
mouse (1:5000) or anti-rabbit (1:5000) secondary antibody. Images
were captured with a Tanon-5200CE imaging system (Tanon,
Shanghai, China), and immunoreactive bands were quantified
using the Tanon-5200CE system analysis software.

Dendritic spine analysis
For the dendritic spine analysis, we employed Thy1-YFP mice,
which express spectral variants of GFP (yellow-YFP) in motor and
sensory neurons, as well as subsets of central neurons under the
thy-1 promoter. Axons are brightly fluorescent throughout the
terminals [24]. After the SIT, Thy1-YFP mice were deeply
anesthetized with sodium pentobarbital and perfused transcar-
dially with 10 mL of isotonic saline, followed by 40mL of ice-cold
4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Brains
were removed from the skulls and postfixed overnight at 4 °C with
the same fixative. For dendritic spine analysis, 50-μm-thick serial
coronal sections of brain tissue were cut in ice-cold 0.01 M
phosphate-buffered saline (pH 7.5) using a vibrating blade
microtome (VT1000S, Leica Microsystems AG, Wetzlar, Germany).
The sections were mounted on gelatinized slides, dehydrated,
cleared, and coverslipped using Permount® (Fisher Scientific, Fair
Lawn, NJ, USA). Next, the sections were observed under a
fluorescence microscope (Olympus BX53, Japan). For spine density
measurements, all clearly evaluable areas containing secondary
dendrites (50–100 μm) from each imaged neuron were used. To
determine relative spine density, spines on multiple dendritic
branches from a single neuron were counted to obtain an average
spine number per 10 μm. For spine number measurements, only
spines that emerged perpendicular to the dendritic shaft were
counted. Three neurons per section, three sections per animal,
and four animals were analyzed. The average value for each
region was calculated for each individual. These individual
averages were then combined to yield a grand average for each
region.

Statistical analysis
Data are shown as mean ± standard error of the mean. The data
were analyzed using PASW Statistics 20 (formerly SPSS Statistics,
SPSS). The behavior data, quantification of Western blot data,
immunofluorescence staining data, luciferase reporter assay data,
dendritic spine analysis data, and ELISA data were analyzed using
a one-way analysis of variance (ANOVA), followed by the post hoc
Fisher LSD test. Statistical significance was set at P < 0.05.
Chromatin immunoprecipitation assay data were analyzed using
the Student’s t test.

RESULTS
SFN confers stress resilience associated with increased Nrf2 and
decreased MeCP2 expressions in stressed mice
To explore the mechanisms by which SFN regulates BDNF
resulting in stress resilience, a CSDS mouse model was employed
(Fig. 1b). Data showed that pretreatment with SFN endowed stress
resilience in the social defeat stress mice model assayed by the
SIT, locomotion test, FST, and SPT. In the SIT without a target, the
social interaction times were similar among groups, while in the
SIT with target, SFN increased social avoidance time in stressed
mice. One-way ANOVA revealed significant effects (F2, 23= 14.651,
P < 0.001) (Fig. 1c). For the locomotion test, no changes in
locomotion were observed among the three groups (Fig. 1d). In
the FST, SFN attenuated the increased immobility time in the
stressed mice (Fig. 1e). In the SPT, SFN enhanced sucrose water
intake in stressed mice (Fig. 1f). One-way ANOVA revealed
significant effects (F2, 26= 6.545, P= 0.005 for FST; F2, 23= 6.3,
P= 0.007 for SPT). Further data showed that CSDS was associated
with decreased Nrf2 and BDNF expression and increased MeCP2
expression in the medial prefrontal cortex (mPFC), which could be
reversed by SFN treatment (Fig. 1g). One-way ANOVA revealed
significant effects (F2, 11= 5.165, P= 0.032 for Nrf2; F2, 11= 7.444,
P= 0.012 for BDNF; F2, 11= 7.178, P= 0.014 for MeCP2). In
addition, immunofluorescence staining indicated that CSDS led
to decreased Nrf2 fluorescence intensity and increased MeCP2
fluorescence intensity in the mPFC, which could also be reversed
by SFN (Fig. 1h, i). One-way ANOVA revealed significant effects
(F2, 11= 16.618, P= 0.001 for Nrf2; F2, 11= 15.623, P= 0.001 for
MeCP2). Since BDNF is a crucial neurotrophic factor mediating
neural plasticity, we further examined the effect of SNF on the
density of dendritic spines in the mPFC. In Thy1-YFP and spine-
labeled model mice [24], we found that dendritic spine density
significantly decreased in the mPFC of stressed mice, which could
be notably reversed by pretreatment with SFN (Fig. 1j and
Supplementary Fig. S1). One-way ANOVA revealed significant
effects (F2, 17= 7.07, P= 0.007 for spine density). Taken together,
these data indicate that increased Nrf2 and decreased MeCP2
expression are associated with SFN treatment, which changes
abnormal BDNF expression and repairs dendritic spine impairment
in stressed mice, inducing stress resilience.

Anti-inflammatory effects of SFN in stressed mice
Inflammatory activation has been demonstrated to play a key role
in the pathogenesis of depression [25, 26]. Patients with major
depressive disorder (MDD) or stress vulnerability exhibit higher
levels of circulating pro-inflammatory cytokines and low levels of
anti-inflammatory cytokines [27, 28]. In this study, we examined
the effects of SFN on pro- and anti-inflammatory cytokine release
in CSDS mice. Data showed that pro-inflammatory cytokine levels,
including those of TNF-α, IL-1β, and IL-6, were significantly higher
in stressed mice than in vehicle-treated mice, which can be
rectified by pretreatment with SFN (Fig. 2a–c). One-way ANOVA
revealed significant effects (F2, 20= 5.637, P= 0.013 for TNF-α;
F2, 20= 13.415, P < 0.001 for IL-1β; F2, 23= 4.237, P= 0.028 for IL-6).
In addition, the decreased levels of two anti-inflammatory
cytokines, namely IL-10 and IL-4, in the stressed mice were
reversed by SNF treatment (Fig. 2d, e). One-way ANOVA revealed
significant effects (F2, 17= 4.548, P= 0.029 for IL-10; F2, 20=
28.581, P < 0.001 for IL-4). These data suggest that rectifying
abnormal inflammation may play an important role in SFN-
conferred stress resilience.

SFN activates BDNF transcription associated with upregulation of
Nrf2 and downregulation of MeCP2 in BV2 cells
Microglia play important roles in the maintenance of normal brain
functions, and those with an anti-inflammatory phenotype
regulate various anti-inflammatory and neurotrophic factors,
playing a role neuronal protection [10, 13]. Thus, we further
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explored whether SFN promotes BDNF expression by affecting
bdnf transcription in microglia. First, we analyzed the activation
effects of SFN on bdnf exons I, II, and IV promoter regions using a
luciferase reporter assay in BV2 cells. Data showed that SFN
prominently activated the bdnf exon I promoter, which could be
blocked by siRNA-Nrf2 (Fig. 3a). One-way ANOVA revealed
significant effects (F6, 55= 506.479, P < 0.001). To further verify
the regulatory effect of SFN on Nrf2-induced BDNF transcription,
we carried out a ChIP analysis on BV2 cells treated with SFN using
an Nrf2-specific antibody. The data indicated that SFN promoted
Nrf2 interaction with the bdnf exon I promoter (Fig. 3b). Student’s t
test revealed significant effects (P= 0.002). Since localization
status could reflect the action of transcription regulators in cells
[29], we carried out immunofluorescence staining in BV2 cells
treated with SFN and/or LPS. The data showed that LPS treatment
led to more MeCP2 within the nucleus and diffused nuclear Nrf2

became punctate, which could be reversed by SFN (Fig. 3c). In
addition, we observed that LPS decreased BDNF and Nrf2
expression and increased MeCP2 in BV2 cells, which could also
be reversed by SFN (Fig. 3d–g). These results suggest that Nrf2 is a
transcriptional activator of BDNF, and activation of Nrf2 promotes
BDNF expression by binding to the bdnf exon I promoter in
BV2 cells.

SFN reverses the abnormal Nrf2 and MeCP2 expressions in
microglia of stressed mice
To verify the results of the in vitro study, we further explored the
effects of SFN on the regulation of Nrf2 and MeCP2 in microglia. The
results showed that stress leads to an increase in IBA1 (microglia
marker) immunoreactivity in the mPFC (Fig. 4a–d), indicating the
induction of abnormal inflammation in the CSDS mice. Pretreatment
with SNF rectified the irregular inflammatory status demonstrated by
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**P < 0.01, ***P < 0.001).
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Fig. 3 Activation of Nrf2 by SFN results in BDNF transcription in BV2 cell. a The luciferase reporter assay for the activation of BDNF I, II, and
IV promoter. BV2 cells are treated with SFN or siRNA-Nrf2 for 24 h followed by luciferase examination. Data of the pcDNA, BDNF II, and IV
promoters are compared with those of BDNF I promoter (mean ± SEM, n= 8 per group, one-way ANOVA, **P < 0.01, ***P < 0.001). b ChIP assay
for the BDNF I promoter. The Nrf2 protein–DNA cross-linking samples are obtained from BV2 cells treated with SFN or vehicle via co-
immunoprecipitation with anti-Nrf2 antibody. PCR is carried out with the BDNF exon I promoter primers (mean ± SEM, n= 4 per group,
Student’s t test, **P < 0.01). c Immunofluorescence staining for Nrf2 and MeCP2. BV2 cells are treated with SFN or LPS for 24 h followed
by immunofluorescence staining. Scale bar, 50 μm. d Representative images of the Western blot analysis for Nrf2, MeCP2, and BDNF.
Quantifications of Nrf2 (e), MeCP2 (f), and BDNF (g) in Western blot analysis. (Mean ± SEM, n= 4 per group, one-way ANOVA, *P < 0.05, **P <
0.01, and ***P < 0.01).
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downregulation of IBA1 staining (Fig. 4a–d). One-way ANOVA revealed
significant effects (F2, 11= 17.333, P= 0.001 for IBA1+ cells/mm2; F2, 11
= 4.937, P= 0.036 for the length of branches of IBA1). Moreover, the
decreased levels of Nrf2 and increased levels of MeCP2 were caused
by stress, which could be prominently reversed by SFN treatment
(Fig. 4a, b, e, f). One-way ANOVA revealed significant effects (F2, 11=
6.629, P= 0.017 for Nrf2; F2, 11= 15.148, P= 0.001 for MeCP2). These
results indicate that SFN induces Nrf2 expression, decreases MeCP2
expression, and prevents stress-induced microglial activation.

SFN inhibits pro-inflammation and activates anti-inflammation
phenotype in microglia, associating with changed Nrf2 and MeCP2
abnormal expression in stressed mice
In the central nervous system, microglial activation is heterogeneous
and functions with pro-inflammatory and anti-inflammatory effects
associated with cytotoxic or neuroprotective effects, respectively
[13]. BDNF can be released from active microglia, leading to
neurogenesis [30, 31]. Hence, we further explored the specificity of
SFN in changing Nrf2 and MeCP2 abnormal expression in the two
phenotypes of microglia in stressed mice. First, to distinguish the
two microglia, the staining of iNOS—a marker for the pro-
inflammatory Phenotypes—and Arginase1—a marker for the anti-
inflammatory Phenotypes—were employed [14, 15]. Co-localization

of iNOS or Arginase1 with IBA1 was prominently observed in the
mPFC (Supplementary Fig. S2). With these staining systems, our data
showed that CSDS led to an increase in iNOS immunoreactivity
(Fig. 5a–c) in the microglia of stressed mice, indicating higher pro-
inflammatory effects of microglia. However, pretreatment with SFN
notably reversed the enhanced pro-inflammatory microglia, repre-
sented by downregulated iNOS-positive cells (Fig. 5a–c). One-way
ANOVA revealed significant effects (F2, 11= 48.7, P < 0.001). In
addition, the immunoreactivity of Nrf2 was decreased (Fig. 5a, d)
with upregulated MeCP2 (Fig. 5b, e) in iNOS-positive cells of stressed
mice, which was reversed by SFN treatment. One-way ANOVA
revealed significant effects (F2, 11= 5.06, P= 0.034 for Nrf2; F2, 11=
6.458, P= 0.018 for MeCP2). Strikingly, we found that Arginase1
positive microglia had evidently decreased in stressed mice, which
was also reversed by pretreatment with SFN (Fig. 6a–c). A one-way
ANOVA revealed significant effects (F2, 11= 4.984, P= 0.035). The
regulation of Nrf2 (Fig. 6a, d) and MeCP2 (Fig. 6b, e) was similar to
that in the iNOS-positive microglia. One-way ANOVA revealed
significant effects (F2, 11= 7.245, P= 0.013 for Nrf2; F2, 11= 7.059,
P= 0.014 for MeCP2). Collectively, these data demonstrate that SFN
inhibits pro-inflammation and activates anti-inflammation pheno-
types of microglia, changes Nrf2 and MeCP2 abnormal expression in
microglia of stressed mice, and confers stress resilience.
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DISCUSSION
In the current study, a natural compound called SFN, confers
stress resilience by activating BDNF transcription in microglia
and reversing abnormal dendritic spine morphology in stressed
mice. Recent studies have shown that SFN exerts antioxidant
and anti-inflammatory effects, which are thought to occur due
to the activation of Nrf2 to promote phase II detoxification
enzymes and antioxidant protein transcription [2, 3, 32, 33]. Our
group has revealed that SFN exerts antipsychotic effects, such as
depression and schizophrenia, via BDNF activation in the mouse
brain [7, 34, 35]. However, the precise molecular and cellular
mechanisms underlying the antipsychotic effects of SFN remain
unclear. Here, using luciferase reporter and ChIP assays, we
found that SFN promotes Nrf2 binding to the bdnf exon I
promoter. Using immunofluorescence staining, we observed
that SFN induced the redistribution of Nrf2 and MeCP2 in the
nucleus of BV2 cells. Western blot analysis indicated that SFN
increased Nrf2 and BDNF levels and decreased MeCP2 expres-
sion in LPS-treated BV2 cells. These data suggest that SFN
induces bdnf transcription, resulting in BDNF protein expression
by activating Nrf2 and inhibiting MeCP2 expression in microglia
in vitro.

BDNF plays a key role in the pathophysiology of depression and
the therapeutic mechanisms of antidepressants [36–44]. Several
studies have shown that decreased BDNF levels and polymorph-
isms in the BDNF gene are associated with MDD. Low levels of
plasma BDNF have been linked to suicidal behaviors in patients
with major depression [45]. In addition, reduced BDNF levels were
detected in the parietal cortex, mPFC, and hippocampus of
postmortem brains of patients with psychiatric disorders, includ-
ing MDD [46, 47]. In another study, decreased mRNA and protein
expression of BDNF and TRKB were found in the hippocampus of
patients who committed suicide [48]. In contrast, elevated levels
of BDNF have been detected in the parietal cortex of postmortem
patients with MDD who received antidepressant treatment
compared with MDD-untreated patients [49]. Therefore, decreased
levels of BDNF in the brain may contribute to the pathophysiology
of depression. Recently, we reported that in the learned help-
lessness (LH) paradigm, the levels of BDNF and Nrf2 were both
decreased in LH rats (susceptible) compared with the non-LH
(resilient) rats and control rats, suggesting that regional differ-
ences in BDNF and Nrf2 levels in the rat brain may promote
resilience to inescapable electric stress [50, 51]. Collectively,
abnormalities in Nrf2 and BDNF crosstalk in the brain may play
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a role in depression-like phenotypes. In our current study, SFN
induced BDNF expression was associated with the upregulation of
the transcription activator Nrf2 and the downregulation of the
transcription repressor MeCP2. These results suggest that SFN-
induced antidepressant effects may be mediated by alterations in
BDNF transcriptional activity in stressed mice. In contrast, it has
been reported that reduced levels of BDNF in mice with
depression-like behavior can prevent Nrf2 translocation and the
activation of detoxifying/antioxidant enzymes, and BDNF can
upregulate Nrf2 expression in neurons [52, 53]. Therefore, it may
represent an interesting positive feedback loop for Nrf2 and BDNF.
In addition, for dendritic spine morphology, SFN attenuated the

CSDS-induced reduction of dendritic spine density in the mPFC.
BDNF protein synthesis is crucial to the structural plasticity of
single dendritic spines [54–56], suggesting that changes in BDNF
transcription in the mPFC with altered dendritic spine density in
these regions by the administration of SFN is very important.
Synaptogenesis is a key regulator of the mechanism of
antidepressants [54–56]. Therefore, the activation of BDNF
transcription by SFN and the resulting alteration in dendritic
spine morphology after CSDS are important aspects of the
mechanisms of SFN-induced antidepressant action. The

association between CSDS and BDNF transcription in the mPFC
and the role of SFN in the activation of BDNF transcription in the
mPFC of stressed mice will be examined in the future.
Microglia have both pro-inflammatory and anti-inflammatory

phenotypes depending on the microenvironment [13–15]. The pro-
inflammatory phenotype of microglia induces iNOS and NF-κB
signaling pathways, leading to the production of pro-inflammatory
cytokines [13, 16, 17]. The anti-inflammatory phenotype of microglia
regulates various anti-inflammatory factors and enhances neuro-
trophic factors, leading to neuronal protection [13, 16, 17]. We noticed
that CSDS is associated with increased numbers of pro-inflammatory
and decreased numbers of anti-inflammatory phenotypes of micro-
glia activation. Pretreatment with SFN suppressed the pro-
inflammatory phenotype of microglia activation and induced the
anti-inflammatory phenotype of microglia in stressed mice. Moreover,
it has been reported that SFN can pass the blood brain barrier and
decrease the release of pro-inflammatory cytokines in the striatum of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice [57]. There-
fore, these findings suggest that SFN-induced antidepressant effects
are associated with the balance of microglial dysfunction. Moreover,
immunofluorescence staining indicated that Nrf2, MeCP2, and
IBA1 shared common localization. In addition, Nrf2, MeCP2, iNOS,
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and Arginase1 also shared a common localization, and CSDS was
associated with decreased Nrf2 expression and increased MeCP2
expression in microglia. The anti-inflammatory phenotype of micro-
glia can coordinate the regulation of various anti-inflammatory factors
and enhance neurotrophic factors, resulting in neuron protection
[13, 16–18]. Therefore, our findings suggest that SFN may promote
BDNF transcription in the anti-inflammatory phenotype of microglia,
showing antidepressant effects in stressed mice. A deeper under-
standing of the interaction between microglia and BDNF release is
necessary to stimulate the development of future strategies for the
treatment of depression.
In summary, our data demonstrate that CSDS is associated with

increased expression of MeCP2 and decreased Nrf2, which in turn
is associated with inhibition of BDNF transcription in microglia.
SFN administration is associated with increased expression of Nrf2
and decreased MeCP2 expression in microglia, resulting in stress
resilience from the activation of BDNF transcription (Fig. 7). The
dynamic changes in the relationship between microglia and BDNF
release may contribute to the antidepressant effects of SFN and
may aid in the development of new strategies for the treatment of
depression.
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