Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pinocembrin attenuates hemorrhagic transformation after delayed t-PA treatment in thromboembolic stroke rats by regulating endogenous metabolites

Abstract

Hemorrhagic transformation (HT) is a common serious complication of stroke after thrombolysis treatment, which limits the clinical use of tissue plasminogen activator (t-PA). Since early diagnosis and treatment for HT is important to improve the prognosis of stroke patients, it is urgent to discover the potential biomarkers and therapeutic drugs. Recent evidence shows that pinocembrin, a natural flavonoid compound, exerts anti-cerebral ischemia effect and expands the time window of t-PA. In this study, we investigated the effect of pinocembrin on t-PA-induced HT and the potential biomarkers for HT after t-PA thrombolysis, thereby improving the prognosis of stroke. Electrocoagulation-induced thrombotic focal ischemic rats received intravenous infusion of t-PA (10 mg/kg) 6 h after ischemia. Administration of pinocembrin (10 mg/kg, iv) prior t-PA infusion significantly decreased the infarct volume, ameliorated t-PA-induced HT, and protected blood–brain barrier. Metabolomics analysis revealed that 5 differential metabolites in the cerebral cortex and 16 differential metabolites in serum involved in amino acid metabolism and energy metabolism were significantly changed after t-PA thrombolysis, whereas pinocembrin administration exerted significant intervention effects on these metabolites. Linear regression analysis showed that lactic acid was highly correlated to the occurrence of HT. Further experiments confirmed that t-PA treatment significantly increased the content of lactic acid and the activity of lactate dehydrogenase in the cerebral cortex and serum, and the expression of monocarboxylate transporter 1 (MCT 1) in the cerebral cortex; pinocembrin reversed these changes, which was consistent with the result of metabolomics. These results demonstrate that pinocembrin attenuates HT after t-PA thrombolysis, which may be associated with the regulation of endogenous metabolites. Lactic acid may be a potential biomarker for HT prediction and treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: The effect of pinocembrin on infarct volume and neurological function.
Fig. 3: The effect of pinocembrin on t-PA-induced hemorrhagic transformation.
Fig. 4: The effect of pinocembrin on BBB structure and permeability.
Fig. 5: PLS-DA score plot derived from 1H-NMR spectra of the cerebral cortex and serum of rats.
Fig. 6: OPLS score plot, corresponding S-plot, and PLS-DA corresponding validation plot derived from the cerebral cortex and serum.
Fig. 7: Metabolic pathways that are significantly regulated by pinocembrin in the cerebral cortex and serum.
Fig. 8: Correlation analysis between differential metabolites and HT.
Fig. 9: The effect of pinocembrin on the production and transport of lactic acid in the cerebral cortex and serum.

References

  1. 1.

    An SJ, Kim TJ, Yoon BW. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke. 2017;19:3–10.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Jickling GC, Liu D, Stamova B, Ander BP, Zhan X, Lu A, et al. Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab. 2014;34:185–99.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Kanazawa M, Takahashi T, Nishizawa M, Shimohata T. Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke. J Atheroscler Thromb. 2017;24:240–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Stone JA, Willey JZ, Keyrouz S, Butera J, McTaggart RA, Cutting S, et al. Therapies for hemorrhagic transformation in acute ischemic stroke. Curr Treat Options Neurol. 2017;19:1.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    El Nawar R, Yeung J, Labreuche J, Chadenat ML, Duong DL, De Malherbe M, et al. MRI-based predictors of hemorrhagic transformation in patients with stroke treated by intravenous thrombolysis. Front Neurol. 2019;10:897.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Wang W, Li MC, Chen QX, Wang J. Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke: mechanisms, models, and biomarkers. Mol Neurobiol. 2015;52:1572–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Liu PF, Li RT, Antonov AA, Wang LH, Li W, Hua YF, et al. Discovery of metabolite biomarkers for acute ischemic stroke progression. J Proteome Res. 2017;16:773–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Ke CF, Pan CW, Zhang YX, Zhu XH, Zhang YH. Metabolomics facilitates the discovery of metabolic biomarkers and pathways for ischemic stroke: a systematic review. Metabolomics. 2019;15:152.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Lan X, Wang WZ, Li Q, Wang J. The natural flavonoid pinocembrin: molecular targets and potential therapeutic applications. Mol Neurobiol. 2016;53:1794–801.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Lan X, Han XN, Li Q, Li Q, Gao YF, Cheng T, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav Immun. 2017;61:326–39.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Ma YZ, Li L, Kong LL, Zhu ZM, Zhang W, Song JK, et al. Pinocembrin protects blood-brain barrier function and expands the therapeutic time window for tissue-type plasminogen activator treatment in a rat thromboembolic stroke model. Biomed Res Int. 2018;2018:8943210.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ma YZ, Li L, Song JK, Niu ZR, Liu HF, Zhou XS, et al. A novel embolic middle cerebral artery occlusion model induced by thrombus formed in common carotid artery in rat. J Neurol Sci. 2015;359:275–9.

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Zhao FF, Chang YF, Gao L, Qin XM, Du GH, Zhang X, et al. Protective effects of Scutellaria baicalensis Georgi extract on D-galactose induced aging rats. Metab Brain Dis. 2018;33:1401–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Duan DD, Wang KX, Zhou YZ, Qin XM, Gao L, Du GH. Baicalein exerts beneficial effects in D-galactose induced aging rats through attenuation of inflammation and metabolic dysfunction. Rejuvenation Res. 2017;20:506–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Wesley UV, Bhute VJ, Hatcher JF, Palecek SP, Dempsey RJ. Local and systemic metabolic alterations in brain, plasma, and liver of rats in response to aging and ischemic stroke, as detected by nuclear magnetic resonance (NMR) spectroscopy. Neurochem Int. 2019;127:113–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Ruan L, Wang Y, Chen SC, Zhao T, Huang Q, Hu ZL, et al. Metabolite changes in the ipsilateral and contralateral cerebral hemispheres in rats with middle cerebral artery occlusion. Neural Regen Res. 2017;12:931–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Liu MT, Tang LY, Liu X, Fang J, Zhan H, Wu HW, et al. An evidence-based review of related metabolites and metabolic network research on cerebral ischemia. Oxid Med Cell Longev. 2016;2016:9162074.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Jung JY, Lee HS, Kang DG, Kim NS, Cha MH, Bang OS, et al. 1H-NMR-based metabolomics study of cerebral infarction. Stroke. 2011;42:1282–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Wang X, Liu T, Song HX, Cui SY, Liu G, Christoforou A, et al. Targeted metabolomic profiling reveals association between altered amino acids and poor functional recovery after stroke. Front Neurol. 2020;10:1425.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Wang D, Kong J, Wu JY, Wang XX, Lai MC. GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci Lett. 2017;642:7–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Lee Y, Khan A, Hong S, Jee SH, Park YH. A metabolomic study on high-risk stroke patients determines low levels of serum lysine metabolites: a retrospective cohort study. Mol Biosyst. 2017;13:1109–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Luo L, Zhen LF, Xu YT, Yang YX, Feng SX, Wang SM, et al. 1H NMR-based metabonomics revealed protective effect of Naodesheng bioactive extract on ischemic stroke rats. J Ethnopharmacol. 2016;186:257–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Sidorov E, Sanghera DK, Vanamala JKP. Biomarker for ischemic stroke using metabolome: a clinician perspective. J Stroke. 2019;21:31–41.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance. Curr Opin Pharmacol. 2017;35:111–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Bai W, Li W, Ning YL, Li P, Zhao Y, Yang N, et al. Blood glutamate levels are closely related to acute lung injury and prognosis after stroke. Front Neurol. 2018;8:755.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Liu R, Liao XY, Pan MX, Tang JC, Chen SF, Zhang Y, et al. Glycine exhibits neuroprotective effects in ischemic stroke in rats through the inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α signaling pathway. J Immunol. 2019;202:1704–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Cai CC, Zhu JH, Ye LX, Dai YY, Fang MC, Hu YY, et al. Glycine protects against hypoxic-ischemic brain injury by regulating mitochondria-mediated autophagy via the AMPK pathway. Oxid Med Cell Longev. 2019;2019:4248529.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Jin R, Xiao AY, Liu S, Wang M, Li GH. Taurine reduces tPA (tissue-type plasminogen activator)-induced hemorrhage and microvascular thrombosis after embolic stroke in rat. Stroke. 2018;49:1708–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Zhu XY, Ma PS, Wu W, Zhou R, Hao YJ, Niu Y, et al. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats. Brain Res Bull. 2016;124:295–305.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Gusev EI, Skvortsova VI, Dambinova SA, Raevskiy KS, Alekseev AA, Bashkatova VG, et al. Neuroprotective effects of glycine for therapy of acute ischaemic stroke. Cerebrovasc Dis. 2000;10:49–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Prentice H, Gharibani PM, Ma ZY, Alexandrescu A, Genova R, Chen PC, et al. Neuroprotective functions through inhibition of ER stress by taurine or taurine combination treatments in a rat stroke model. Adv Exp Med Biol. 2017;975:193–205.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Prentice H, Pan CL, Gharibani PM, Ma ZY, Price AL, Giraldo GS, et al. Analysis of neuroprotection by taurine and taurine combinations in primary. neuronal cultures and in neuronal cell lines exposed to glutamate excitotoxicity and to hypoxia/re-oxygenation. Adv Exp Med Biol. 2017;975:207–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Jirak D, Ziolkowska N, Turnovcova K, Karova K, Sykova E, Jendelova P, et al. Metabolic changes in focal brain ischemia in rats treated with human induced pluripotent stem cell-derived neural precursors confirm the beneficial effect of transplanted cells. Front Neurol. 2019;10:1074.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Ghandforoush-Sattari M, Mashayekhi SO, Nemati M, Ayromlou H. Changes in plasma concentration of taurine in stroke. Neurosci Lett. 2011;496:172–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Kofler M, Schiefecker A, Ferger B, Beer R, Sohm F, Broessner G, et al. Cerebral taurine levels are associated with brain edema and delayed cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2015;23:321–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Dienel GA. Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab. 2012;32:1107–38.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Tsacopoulos M, Magistretti PJ. Metabolic coupling between glia and neurons. J Neurosci. 1996;16:877–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Rosafio K, Castillo X, Hirt L, Pellerin L. Cell-specific modulation of monocarboxylate transporter expression contributes to the metabolic reprograming taking place following cerebral ischemia. Neuroscience. 2016;317:108–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Lu Y, Zhao HJ, Wang Y, Han BB, Wang T, Zhao H, et al. Electro-acupuncture up-regulates astrocytic MCT1 expression to improve neurological deficit in middle cerebral artery occlusion rats. Life Sci. 2015;134:68–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Xie D, Hu D, Zhang Q, Sun YF, Li JM, Zhang YB. Increased high-sensitivity C-reactive protein, erythrocyte sedimentation rate and lactic acid in stroke patients with internal carotid artery occlusion. Arch Med Sci. 2016;12:546–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Brouns R, Sheorajpanday R, Wauters A, De Surgeloose D, Mariën P, De, et al. Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA. Clin Chim Acta. 2008;397:27–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Loaiza A, Porras OH, Barros LF. Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci. 2003;23:7337–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol. 2013;4:32.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Foerch C, Wunderlich MT, Dvorak F, Humpich M, Kahles T, Goertler M, et al. Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke. 2007;38:2491–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan of China (2016YFC1000905); the Beijing Municipal Natural Science Foundation (7182113); the CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-007); and The Drug Innovation Major Project of China (2018ZX09711001-009-009).

Author information

Affiliations

Authors

Contributions

LLK and GHD conceived and designed the experiments. LLK performed the experiments, drafted the paper, and analyzed the data. LG and KXW performed the metabolomics study. NNL, CDL, GDM, and HGY performed the animal experiments. XMQ and GHD reviewed and edited the paper. All authors read and approved the final paper.

Corresponding author

Correspondence to Guan-hua Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, Ll., Gao, L., Wang, Kx. et al. Pinocembrin attenuates hemorrhagic transformation after delayed t-PA treatment in thromboembolic stroke rats by regulating endogenous metabolites. Acta Pharmacol Sin (2021). https://doi.org/10.1038/s41401-021-00664-x

Download citation

Keywords

  • stroke
  • hemorrhagic transformation
  • tissue plasminogen activator
  • pinocembrin
  • metabolomics
  • biomarker
  • lactic acid

Search

Quick links