Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulatory T cells in ischemic stroke

Abstract

Recent evidence shows that when ischemic stroke (IS) occurs, the BBB would be destructed, thereby promoting the immune cells to migrate into the brain, suggesting that the immune responses can play a vital role in the pathology of IS. As an essential subpopulation of immunosuppressive T cells, regulatory T (Treg) cells are involved in maintaining immune homeostasis and suppressing immune responses in the pathophysiological conditions of IS. During the past decades, the regulatory role of Treg cells has attracted the interest of numerous researchers. However, whether they are beneficial or detrimental to the outcomes of IS remains controversial. Moreover, Treg cells exert distinctive effects in the different stages of IS. Therefore, it is urgent to elucidate how Treg cells modulate the immune responses induced by IS. In this review, we describe how Treg cells fluctuate and play a role in the regulation of immune responses after IS in both experimental animals and humans, and summarize their biological functions and mechanisms in both CNS and periphery. We also discuss how Treg cells participate in poststroke inflammation and immunodepression and the potential of Treg cells as a novel therapeutic approach.

文章介绍

免疫细胞浸润是调控卒中后神经损伤与修复的核心机制。调节性T (Treg) 细胞作为免疫抑制T细胞的重要亚群, 在缺血性脑卒中的病理进程中, 参与维持免疫稳态, 调控免疫反应等作用。既往研究表明, Treg细胞因缺血性脑卒中病理阶段不同而功能各异, 例如, Liesz等人证实, 脑卒中发生7天后, Treg细胞具有神经保护作用; 而Kleinschnitz等人发现, Treg 细胞缺失的DEREG小鼠在脑卒中1天后的梗死体积小于对照组, 证明Treg细胞在其中扮演有害角色。因此, 阐明Treg细胞如何调节缺血性脑卒中后免疫反应十分重要。在本篇综述中, 我们描述了Treg细胞在实验动物和人类发生缺血性脑卒中后的变化特征, 以及该细胞在调节免疫应答中的作用, 并讨论了Treg细胞如何参与缺血性脑卒中后炎症和免疫抑制的分子机制, 提出了Treg细胞作为一种新型细胞治疗方法的潜力及未来的研究方向。

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The role of Treg cells in ischemic stroke.

References

  1. 1.

    Nakamura K, Shichita T. Cellular and molecular mechanisms of sterile inflammation in ischaemic stroke. J Biochem. 2019;165:459–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Zhang R, Zhang Z, Chopp M. Function of neural stem cells in ischemic brain repair processes. J Cereb Blood Flow Metab. 2016;36:2034–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    dela Pena IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab. 2015;35:338–46.

    Article  CAS  Google Scholar 

  4. 4.

    Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006;113:2105–12.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Chen C, Chu SF, Ai QD, Zhang Z, Chen NH. CKLF1/CCR5 axis is involved in neutrophils migration of rats with transient cerebral ischemia. Int Immunopharmacol. 2020;85:106577.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Guerrini MM, Okamoto K, Komatsu N, Sawa S, Danks L, Penninger JM, et al. Inhibition of the TNF family cytokine RANKL prevents autoimmune inflammation in the central nervous system. Immunity. 2015;43:1174–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Jian Z, Liu R, Zhu X, Smerin D, Zhong Y, Gu L, et al. The involvement and therapy target of immune cells after ischemic stroke. Front Immunol. 2019;10:2167.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000;101:455–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res. 2018;96:951–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Spitz C, Winkels H, Burger C, Weber C, Lutgens E, Hansson GK, et al. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. Cell Mol Life Sci. 2016;73:901–22.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    CAS  PubMed  Google Scholar 

  12. 12.

    Xu X, Li M, Jiang Y. The paradox role of regulatory T cells in ischemic stroke. Sci World J. 2013;2013:174373.

    Google Scholar 

  13. 13.

    Ito M, Komai K, Nakamura T, Srirat T, Yoshimura A. Tissue regulatory T cells and neural repair. Int Immunol. 2019;31:361–9.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Liesz A, Kleinschnitz C. Regulatory T Cells in post-stroke immune homeostasis. Transl Stroke Res. 2016;7:313–21.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Hu Y, Zheng Y, Wu Y, Ni B, Shi S. Imbalance between IL-17A-producing cells and regulatory T cells during ischemic stroke. Mediators Inflamm. 2014;2014:813045.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Meng X, Yang J, Dong M, Zhang K, Tu E, Gao Q, et al. Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol. 2016;13:167–79.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Urra X, Cervera A, Villamor N, Planas AM, Chamorro A. Harms and benefits of lymphocyte subpopulations in patients with acute stroke. Neuroscience. 2009;158:1174–83.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Chen S, Wu H, Klebe D, Hong Y, Zhang J, Tang J. Regulatory T cell in stroke: a new paradigm for immune regulation. Clin Dev Immunol. 2013;2013:689827.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Yan J, Read SJ, Henderson RD, Hull R, O’Sullivan JD, McCombe PA, et al. Frequency and function of regulatory T cells after ischaemic stroke in humans. J Neuroimmunol. 2012;243:89–94.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Yan J, Greer JM, Etherington K, Cadigan GP, Cavanagh H, Henderson RD, et al. Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol. 2009;206:112–7.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Pang X, Qian W. Changes in regulatory T-cell levels in acute cerebral ischemia. J Neurol Surg A Cent Eur Neurosurg. 2017;78:374–9.

    PubMed  Article  Google Scholar 

  22. 22.

    Stubbe T, Ebner F, Richter D, Engel O, Klehmet J, Royl G, et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab. 2013;33:37–47.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Chaudhry A, Rudensky AY. Control of inflammation by integration of environmental cues by regulatory T cells. J Clin Invest. 2013;123:939–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, et al. Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour. Nature. 2016;535:425–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, et al. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener. 2020;15:32.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Gobel K, Schuhmann MK, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121:679–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol. 2006;176:6523–31.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol. 2012;7:1017–24.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol. 2013;74:458–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40:1849–57.

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Llovera G, Roth S, Plesnila N, Veltkamp R, Liesz A. Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp. 2014:e51729. https://doi.org/10.3791/51729.

  32. 32.

    Llovera G, Hofmann K, Roth S, Salas-Perdomo A, Ferrer-Ferrer M, Perego C, et al. Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia. Sci Transl Med. 2015;7:299ra121.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. 33.

    Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature. 2019;565:246–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15:192–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Zhang H, Xia Y, Ye Q, Yu F, Zhu W, Li P, et al. In vivo expansion of regulatory T cells with IL-2/IL-2 Antibody complex protects against transient ischemic stroke. J Neurosci. 2018;38:10168–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Schuhmann MK, Kraft P, Stoll G, Lorenz K, Meuth SG, Wiendl H, et al. CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. J Cereb Blood Flow Metab. 2015;35:6–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis. 2011;26:87–90.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  38. 38.

    Liesz A, Hagmann S, Zschoche C, Adamek J, Zhou W, Sun L, et al. The spectrum of systemic immune alterations after murine focal ischemia: immunodepression versus immunomodulation. Stroke. 2009;40:2849–58.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Liesz A, Ruger H, Purrucker J, Zorn M, Dalpke A, Mohlenbruch M, et al. Stress mediators and immune dysfunction in patients with acute cerebrovascular diseases. PLoS One. 2013;8:e74839.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Hug A, Dalpke A, Wieczorek N, Giese T, Lorenz A, Auffarth G, et al. Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection. Stroke. 2009;40:3226–32.

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Na SY, Mracsko E, Liesz A, Hunig T, Veltkamp R. Amplification of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice. Stroke. 2015;46:212–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Zhuang R, Feinberg MW. Regulatory T cells in ischemic cardiovascular injury and repair. J Mol Cell Cardiol. 2019;147:1–11.

    Article  CAS  Google Scholar 

  43. 43.

    Danese S, Rutella S. The Janus face of CD4+CD25+ regulatory T cells in cancer and autoimmunity. Curr Med Chem. 2007;14:649–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, et al. Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol. 2013;23:34–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Gauberti M, Martinez de Lizarrondo S, Orset C, Vivien D. Lack of secondary microthrombosis after thrombin-induced stroke in mice and non-human primates. J Thromb Haemost. 2014;12:409–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Bai J, Lyden PD. Revisiting cerebral postischemic reperfusion injury: new insights in understanding reperfusion failure, hemorrhage, and edema. Int J Stroke. 2015;10:143–52.

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Pham M, Kleinschnitz C, Helluy X, Bartsch AJ, Austinat M, Behr VC, et al. Enhanced cortical reperfusion protects coagulation factor XII-deficient mice from ischemic stroke as revealed by high-field MRI. Neuroimage. 2010;49:2907–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Lansberg MG, Straka M, Kemp S, Mlynash M, Wechsler LR, Jovin TG, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol. 2012;11:860–7.

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Neumann C, Scheffold A, Rutz S. Functions and regulation of T cell-derived interleukin-10. Semin Immunol. 2019;44:101344.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Liesz A, Hu X, Kleinschnitz C, Offner H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke. 2015;46:1422–30.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Liesz A, Zhou W, Na SY, Hammerling GJ, Garbi N, Karcher S, et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci. 2013;33:17350–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Liu X, Hu R, Pei L, Si P, Wang C, Tian X, et al. Regulatory T cell is critical for interleukin-33-mediated neuroprotection against stroke. Exp Neurol. 2020;328:113233.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Xiao W, Guo S, Chen L, Luo Y. The role of Interleukin-33 in the modulation of splenic T-cell immune responses after experimental ischemic stroke. J Neuroimmunol. 2019;333:576970.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Zhang C, Li L, Feng K, Fan D, Xue W, Lu J. ‘Repair’ treg cells in tissue injury. Cell Physiol Biochem. 2017;43:2155–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Shalev I, Schmelzle M, Robson SC, Levy G. Making sense of regulatory T cell suppressive function. Semin Immunol. 2011;23:282–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30:636–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21:589–601.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005;174:1783–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity. 2007;27:635–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Yao S, Chen L. PD-1 as an immune modulatory receptor. Cancer J. 2014;20:262–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Boussiotis VA, Chatterjee P, Li L. Biochemical signaling of PD-1 on T cells and its functional implications. Cancer J. 2014;20:265–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Li P, Mao L, Liu X, Gan Y, Zheng J, Thomson AW, et al. Essential role of program death 1-ligand 1 in regulatory T-cell-afforded protection against blood-brain barrier damage after stroke. Stroke. 2014;45:857–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H. PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation. 2013;10:111.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Bodhankar S, Chen Y, Lapato A, Dotson AL, Wang J, Vandenbark AA, et al. PD-L1 monoclonal antibody treats ischemic stroke by controlling central nervous system inflammation. Stroke. 2015;46:2926–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB. Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther. 2011;129:120–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Wei YB, McCarthy M, Ren H, Carrillo-Roa T, Shekhtman T, DeModena A, et al. A functional variant in the serotonin receptor 7 gene (HTR7), rs7905446, is associated with good response to SSRIs in bipolar and unipolar depression. Mol Psychiatry. 2020;25:1312–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Vigli D, Rusconi L, Valenti D, La Montanara P, Cosentino L, Lacivita E, et al. Rescue of prepulse inhibition deficit and brain mitochondrial dysfunction by pharmacological stimulation of the central serotonin receptor 7 in a mouse model of CDKL5 deficiency disorder. Neuropharmacology. 2019;144:104–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Lenglet S, Louiset E, Delarue C, Vaudry H, Contesse V. Activation of 5-HT7 receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinology. 2002;143:1748–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Klein M, Bopp T. Cyclic AMP represents a crucial component of Treg cell-mediated immune regulation. Front Immunol. 2016;7:315.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    McDonough A, Weinstein JR. The role of microglia in ischemic preconditioning. Glia. 2020;68:455–71.

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Chen C, Ai QD, Chu SF, Zhang Z, Chen NH. NK cells in cerebral ischemia. Biomed Pharmacother. 2019;109:547–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Wang S, Zhang H, Xu Y. Crosstalk between microglia and T cells contributes to brain damage and recovery after ischemic stroke. Neurol Res. 2016;38:495–503.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, et al. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3beta/PTEN axis. J Cereb Blood Flow Metab. 2017;37:967–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Brea D, Agulla J, Rodriguez-Yanez M, Barral D, Ramos-Cabrer P, Campos F, et al. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia. J Cell Mol Med. 2014;18:1571–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Klebe D, McBride D, Flores JJ, Zhang JH, Tang J. Modulating the immune response towards a neuroregenerative peri-injury milieu after cerebral hemorrhage. J Neuroimmune Pharmacol. 2015;10:576–86.

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Shu L, Xu CQ, Yan ZY, Yan Y, Jiang SZ, Wang YR. Post-stroke microglia induce Sirtuin2 expression to suppress the anti-inflammatory function of infiltrating regulatory T cells. Inflammation. 2019;42:1968–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Nutma E, van Gent D, Amor S, Peferoen LAN. Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells. 2020;9:600.

    CAS  PubMed Central  Article  Google Scholar 

  79. 79.

    Kramer TJ, Hack N, Bruhl TJ, Menzel L, Hummel R, Griemert EV, et al. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-gamma gene expression in acute experimental traumatic brain injury. J Neuroinflammation. 2019;16:163.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Bourque J, Hawiger D. Immunomodulatory bonds of the partnership between dendritic cells and T cells. Crit Rev Immunol. 2018;38:379–401.

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Halpert MM, Konduri V, Liang D, Chen Y, Wing JB, Paust S, et al. Dendritic cell-secreted cytotoxic T-lymphocyte-associated protein-4 regulates the T-cell response by downmodulating bystander surface B7. Stem Cells Dev. 2016;25:774–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295–302.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Alissafi T, Banos A, Boon L, Sparwasser T, Ghigo A, Wing K, et al. Tregs restrain dendritic cell autophagy to ameliorate autoimmunity. J Clin Invest. 2017;127:2789–804.

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Harden JL, Egilmez NK. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol Invest. 2012;41:738–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Brenk M, Scheler M, Koch S, Neumann J, Takikawa O, Hacker G, et al. Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+ CD25+ Foxp3+ T regulatory cells. J Immunol. 2009;183:145–54.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017;46:927–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Gan Y, Liu Q, Wu W, Yin JX, Bai XF, Shen R, et al. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci USA. 2014;111:2704–9.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Brait VH, Arumugam TV, Drummond GR, Sobey CG. Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J Cereb Blood Flow Metab. 2012;32:598–611.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Zhang S, Jin Y, Liu X, Yang L, Ge Z, Wang H, et al. Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons. Brain Res. 2014;1582:1–11.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Malone K, Amu S, Moore AC, Waeber C. Immunomodulatory therapeutic strategies in stroke. Front Pharmacol. 2019;10:630.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Shi K, Wood K, Shi FD, Wang X, Liu Q. Stroke-induced immunosuppression and poststroke infection. Stroke Vasc Neurol. 2018;3:34–41.

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Santos Samary C, Pelosi P, Leme Silva P, Rieken Macedo Rocco P. Immunomodulation after ischemic stroke: potential mechanisms and implications for therapy. Crit Care. 2016;20:391.

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Vahidy FS, Parsha KN, Rahbar MH, Lee M, Bui TT, Nguyen C, et al. Acute splenic responses in patients with ischemic stroke and intracerebral hemorrhage. J Cereb Blood Flow Metab. 2016;36:1012–21.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Jiang C, Kong W, Wang Y, Ziai W, Yang Q, Zuo F, et al. Changes in the cellular immune system and circulating inflammatory markers of stroke patients. Oncotarget. 2017;8:3553–67.

    PubMed  Article  Google Scholar 

  96. 96.

    Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol. 2013;25:305–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Green AM, Difazio R, Flynn JL. IFN-gamma from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol. 2013;190:270–7.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Gao L, Lu Q, Huang LJ, Ruan LH, Yang JJ, Huang WL, et al. Transplanted neural stem cells modulate regulatory T, gammadelta T cells and corresponding cytokines after intracerebral hemorrhage in rats. Int J Mol Sci. 2014;15:4431–41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146:772–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Tsun A, Chen Z, Li B. Romance of the three kingdoms: RORgammat allies with HIF1alpha against FoxP3 in regulating T cell metabolism and differentiation. Protein Cell. 2011;2:778–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Xia Y, Cai W, Thomson AW, Hu X. Regulatory T cell therapy for ischemic stroke: how far from clinical translation? Transl Stroke Res. 2016;7:415–9.

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov. 2019;18:749–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Dijke IE, Hoeppli RE, Ellis T, Pearcey J, Huang Q, McMurchy AN, et al. Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am J Transpl. 2016;16:58–71.

    CAS  Article  Google Scholar 

  104. 104.

    Mathew JM, Voss JH, LeFever A, Konieczna I, Stratton C, He J, et al. A phase I clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants. Sci Rep. 2018;8:7428.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 2007;109:827–35.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Rossetti M, Spreafico R, Saidin S, Chua C, Moshref M, Leong JY, et al. Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the FOXP3 regulatory T cell-specific demethylated region. J Immunol. 2015;194:113–24.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Xie L, Sun F, Wang J, Mao X, Xie L, Yang SH, et al. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. J Immunol. 2014;192:6009–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Hippen KL, Merkel SC, Schirm DK, Sieben CM, Sumstad D, Kadidlo DM, et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Sci Transl Med. 2011;3:83ra41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Putnam AL, Safinia N, Medvec A, Laszkowska M, Wray M, Mintz MA, et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am J Transpl. 2013;13:3010–20.

    CAS  Article  Google Scholar 

  110. 110.

    Shevach EM. Application of IL-2 therapy to target T regulatory cell function. Trends Immunol. 2012;33:626–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Kim BS, Nishikii H, Baker J, Pierini A, Schneidawind D, Pan Y, et al. Treatment with agonistic DR3 antibody results in expansion of donor Tregs and reduced graft-versus-host disease. Blood. 2015;126:546–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Rodriguez-Barbosa JI, Schneider P, Graca L, Buhler L, Perez-Simon JA, Del Rio ML. The role of TNFR2 and DR3 in the in vivo expansion of tregs in T cell depleting transplantation regimens. Int J Mol Sci. 2020;21:3347.

    CAS  PubMed Central  Article  Google Scholar 

  113. 113.

    Biswas M, Sarkar D, Kumar SR, Nayak S, Rogers GL, Markusic DM, et al. Synergy between rapamycin and FLT3 ligand enhances plasmacytoid dendritic cell-dependent induction of CD4+CD25+FoxP3+ Treg. Blood. 2015;125:2937–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Klein O, Ebert LM, Zanker D, Woods K, Tan BS, Fucikova J, et al. Flt3 ligand expands CD4+FoxP3+ regulatory T cells in human subjects. Eur J Immunol. 2013;43:533–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Ishibashi S, Maric D, Mou Y, Ohtani R, Ruetzler C, Hallenbeck JM. Mucosal tolerance to E-selectin promotes the survival of newly generated neuroblasts via regulatory T-cell induction after stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab. 2009;29:606–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Ishibashi S. Immunomodulation by inducing tolerance to E-selectin and adult neurogenesis after stroke. Rinsho Shinkeigaku Clin Neurol. 2010;50:882–5.

    Article  Google Scholar 

  117. 117.

    Gee JM, Kalil A, Thullbery M, Becker KJ. Induction of immunologic tolerance to myelin basic protein prevents central nervous system autoimmunity and improves outcome after stroke. Stroke. 2008;39:1575–82.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81730096, 82074044, 81873026, 81973499, and 81773924), the Natural Science Foundation of Beijing (7192135), the Drug Innovation Major Project (2018ZX09711001-002-007, 2018ZX09711001-003-005, and 2018ZX09711001-009-013), and the CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2 M-1-004).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shi-feng Chu or Nai-hong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Hy., Ye, Jr., Cui, Ly. et al. Regulatory T cells in ischemic stroke. Acta Pharmacol Sin (2021). https://doi.org/10.1038/s41401-021-00641-4

Download citation

Keywords

  • regulatory T cells
  • ischemic stroke
  • inflammation
  • crosstalk
  • stroke-induced immunodepression
  • ischemic stroke therapy

Search

Quick links