Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

N-n-Butyl haloperidol iodide ameliorates liver fibrosis and hepatic stellate cell activation in mice

Abstract

N-n-Butyl haloperidol iodide (F2) is a novel compound that has antiproliferative and antifibrogenic activities. In this study we investigated the therapeutic potential of F2 against liver fibrosis in mice and the underlying mechanisms. Two widely used mouse models of fibrosis was established in mice by injection of either carbon tetrachloride (CCl4) or thioacetamide (TAA). The mice received F2 (0.75, 1.5 or 3 mg·kg−1·d−1, ip) for 4 weeks of fibrosis induction. We showed that F2 administration dose-dependently ameliorated CCl4- or TAA-induced liver fibrosis, evidenced by significant decreases in collagen deposition and c-Jun, TGF-β receptor II (TGFBR2), α-smooth muscle actin (α-SMA), and collagen I expression in the liver. In transforming growth factor beta 1 (TGF-β1)-stimulated LX-2 cells (a human hepatic stellate cell line) and primary mouse hepatic stellate cells, treatment with F2 (0.1, 1, 10 μM) concentration-dependently inhibited the expression of α-SMA, and collagen I. In LX-2 cells, F2 inhibited TGF-β/Smad signaling through reducing the levels of TGFBR2; pretreatment with LY2109761 (TGF-β signaling inhibitor) or SP600125 (c-Jun signaling inhibitor) markedly inhibited TGF-β1-induced induction of α-SMA and collagen I. Knockdown of c-Jun decreased TGF-β signaling genes, including TGFBR2 levels. We revealed that c-Jun was bound to the TGFBR2 promoter, whereas F2 suppressed the binding of c-Jun to the TGFBR2 promoter to restrain TGF-β signaling and inhibit α-SMA and collagen I upregulation. In conclusion, the therapeutic benefit of F2 against liver fibrosis results from inhibition of c-Jun expression to reduce TGFBR2 and concomitant reduction of the responsiveness of hepatic stellate cells to TGF-β1. F2 may thus be a potentially new effective pharmacotherapy for human liver fibrosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: F2 treatment inhibits CCl4-induced liver fibrosis in mice.
Fig. 2: F2 alleviates TAA-induced liver fibrosis in mice.
Fig. 3: F2 inhibits TGF-β1-induced activation of hepatic stellate cells.
Fig. 4: F2 decreases TGFBR2 and c-Jun expression in vivo and in vitro.
Fig. 5: Inhibiting c-Jun reduces TGF-β signaling.
Fig. 6: Altering TGFBR2 expression influenced the antifibrotic effect of F2.
Fig. 7: c-Jun siRNA inhibits TGF-β signaling, and F2 reduces the binding of c-Jun to the TGFBR2 promoter.
Fig. 8: Schematic diagram of the mechanism by which F2 prevents liver fibrosis.

References

  1. 1.

    Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25:195–206.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397–411.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64:830–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 2017;66:180–90.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020;9:875.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  7. 7.

    Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: concept to treatment. J Hepatol. 2015;62:S15–24.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Huang ZQ, Shi GG, Zheng JH, Liu B. Effects of N-n-butyl haloperidol iodide on rat myocardial ischemia and reperfusion injury and L-type calcium current. Acta Pharmacol Sin. 2003;24:757–63.

    CAS  PubMed  Google Scholar 

  9. 9.

    Gao FF, Shi GG, Zheng JH, Liu B. Protective effects of N-n-butyl haloperidol iodide on myocardial ischemia-reperfusion injury in rabbits. Chin J Physiol. 2004;47:61–6.

    CAS  PubMed  Google Scholar 

  10. 10.

    Wang JZ, Cai CY, Zhang YM, Zheng JH, Chen YC, Li WQ, et al. N-n-Butyl haloperidol iodide protects against hypoxia/reoxygenation-induced cardiomyocyte injury by modulating protein kinase C activity. Biochem Pharmacol. 2010;79:1428–36.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Zhang Y, Chen G, Zhong S, Zheng F, Gao F, Chen Y, et al. N-n-butyl haloperidol iodide ameliorates cardiomyocytes hypoxia/reoxygenation injury by extracellular calcium-dependent and -independent mechanisms. Oxid Med Cell Longev. 2013;2013:912310.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zhang Y, Liao H, Zhong S, Gao F, Chen Y, Huang Z, et al. Effect of N-n-butyl haloperidol iodide on ROS/JNK/Egr-1 signaling in H9c2 cells after hypoxia/reoxygenation. Sci Rep. 2015;5:11809.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Lu S, Zhang Y, Zhong S, Gao F, Chen Y, Li W, et al. N-n-butyl haloperidol iodide protects against hypoxia/reoxygenation injury in cardiac microvascular endothelial cells by regulating the ROS/MAPK/Egr-1 Pathway. Front Pharmacol. 2016;7:520.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Huang ZQ, Jiang HY, Li JY, Liu XP, Zheng YS, Gao FF, et al. Effects of N-n-butly haloperidol iodide on the proliferation of intima and vascular muscle cells of rabbit carotid artery after balloon injury. Chin J Clin Pharmacol Ther. 2012;17:1112–7.

    CAS  Google Scholar 

  15. 15.

    Rechtman MM, Nakaryakov A, Shapira KE, Ehrlich M, Henis YI. Different domains regulate homomeric and heteromeric complex formation among type I and type II transforming growth factor-beta receptors. J Biol Chem. 2009;284:7843–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Vaamonde-Garcia C, Malaise O, Charlier E, Deroyer C, Neuville S, Gillet P, et al. 15-Deoxy-Delta-12, 14-prostaglandin J2 acts cooperatively with prednisolone to reduce TGF-beta-induced pro-fibrotic pathways in human osteoarthritis fibroblasts. Biochem Pharmacol. 2019;165:66–78.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Fu X, Qie J, Fu Q, Chen J, Jin Y, Ding Z. miR-20a-5p/TGFBR2 axis affects pro-inflammatory macrophages and aggravates liver fibrosis. Front Oncol. 2020;10:107.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Fan W, Liu T, Chen W, Hammad S, Longerich T, Hausser I, et al. ECM1 prevents activation of transforming growth factor beta, hepatic stellate cells, and fibrogenesis in mice. Gastroenterology. 2019;157:1352–67.e13.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4:E131–6.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Ryseck RP, Bravo R. c-JUN, JUN B, and JUN D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins. Oncogene. 1991;6:533–42.

    CAS  PubMed  Google Scholar 

  21. 21.

    Zhang Z, Gao Z, Hu W, Yin S, Wang C, Zang Y, et al. 3,3’-Diindolylmethane ameliorates experimental hepatic fibrosis via inhibiting miR-21 expression. Br J Pharmacol. 2013;170:649–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Trierweiler C, Hockenjos B, Zatloukal K, Thimme R, Blum HE, Wagner EF, et al. The transcription factor c-JUN/AP-1 promotes HBV-related liver tumorigenesis in mice. Cell Death Differ. 2016;23:576–82.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Schulien I, Hockenjos B, Schmitt-Graeff A, Perdekamp MG, Follo M, Thimme R, et al. The transcription factor c-Jun/AP-1 promotes liver fibrosis during non-alcoholic steatohepatitis by regulating osteopontin expression. Cell Death Differ. 2019;26:1688–99.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Seki E, Brenner DA, Karin M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology. 2012;143:307–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Kluwe J, Pradere JP, Gwak GY, Mencin A, De Minicis S, Osterreicher CH, et al. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology. 2010;138:347–59.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Mederacke I, Dapito DH, Affo S, Uchinami H, Schwabe RF. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc. 2015;10:305–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Dorn C, Engelmann JC, Saugspier M, Koch A, Hartmann A, Muller M, et al. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Invest. 2014;94:394–408.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Song K, Wang H, Krebs TL, Kim SJ, Danielpour D. Androgenic control of transforming growth factor-beta signaling in prostate epithelial cells through transcriptional suppression of transforming growth factor-beta receptor II. Cancer Res. 2008;68:8173–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Chen A. Acetaldehyde stimulates the activation of latent transforming growth factor-beta1 and induces expression of the type II receptor of the cytokine in rat cultured hepatic stellate cells. Biochem J. 2002;368:683–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33:105–36.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Wallace MC, Hamesch K, Lunova M, Kim Y, Weiskirchen R, Strnad P, et al. Standard operating procedures in experimental liver research: thioacetamide model in mice and rats. Lab Anim. 2015;49:21–9.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Strnad P, Tao GZ, Zhou Q, Harada M, Toivola DM, Brunt EM, et al. Keratin mutation predisposes to mouse liver fibrosis and unmasks differential effects of the carbon tetrachloride and thioacetamide models. Gastroenterology. 2008;134:1169–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Xu L, Hui AY, Albanis E, Arthur MJ, O’Byrne SM, Blaner WS, et al. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut. 2005;54:142–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, et al. Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem. 1998;273:33750–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Zhao Y, Shah DU. Expression of transforming growth factor-beta type I and type II receptors is altered in rat lungs undergoing bleomycin-induced pulmonary fibrosis. Exp Mol Pathol. 2000;69:67–78.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Zhao N, Koenig SN, Trask AJ, Lin CH, Hans CP, Garg V, et al. MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells. Circ Res. 2015;116:23–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Jaffe M, Sesti C, Washington IM, Du L, Dronadula N, Chin MT, et al. Transforming growth factor-beta signaling in myogenic cells regulates vascular morphogenesis, differentiation, and matrix synthesis. Arterioscler Thromb Vasc Biol. 2012;32:e1–11.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Akhurst RJ, Padgett RW. Matters of context guide future research in TGFbeta superfamily signaling. Sci Signal. 2015;8:re10.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. 40.

    Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells. Adv Drug Deliv Rev. 2009;61:497–512.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Mann DA, Smart DE. Transcriptional regulation of hepatic stellate cell activation. Gut. 2002;50:891–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Mathas S, Hinz M, Anagnostopoulos I, Krappmann D, Lietz A, Jundt F, et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J. 2002;21:4104–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Liu XJ, Yang L, Mao YQ, Wang Q, Huang MH, Wang YP, et al. Effects of the tyrosine protein kinase inhibitor genistein on the proliferation, activation of cultured rat hepatic stellate cells. World J Gastroenterol. 2002;8:739–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Fabre T, Kared H, Friedman SL, Shoukry NH. IL-17A enhances the expression of profibrotic genes through upregulation of the TGF-beta receptor on hepatic stellate cells in a JNK-dependent manner. J Immunol. 2014;193:3925–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Bae HW, Geiser AG, Kim DH, Chung MT, Burmester JK, Sporn MB, et al. Characterization of the promoter region of the human transforming growth factor-beta type II receptor gene. J Biol Chem. 1995;270:29460–8.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Huang Y, Gao F, Zhang Y, Chen Y, Wang B, Zheng Y, et al. N-n-Butyl haloperidol iodide inhibits the augmented Na+/Ca2+ exchanger currents and L-type Ca2+ current induced by hypoxia/reoxygenation or H2O2 in cardiomyocytes. Biochem Biophys Res Commun. 2012;421:86–90.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Zhou Y, Zhang Y, Gao F, Guo F, Wang J, Cai W, et al. N-n-butyl haloperidol iodide protects cardiac microvascular endothelial cells from hypoxia/reoxygenation injury by down-regulating Egr-1 expression. Cell Physiol Biochem. 2010;26:839–48.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Xu D, Wu Y, Liao ZX, Wang H. Protective effect of verapamil on multiple hepatotoxic factors-induced liver fibrosis in rats. Pharmacol Res. 2007;55:280–6.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Hsu YC, Chiu YT, Cheng CC, Wu CF, Lin YL, Huang YT. Antifibrotic effects of tetrandrine on hepatic stellate cells and rats with liver fibrosis. J Gastroenterol Hepatol. 2007;22:99–111.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Team Project of the Natural Science Foundation of Guangdong Province of China (No. 9351503102000001). The authors thank the Pharmacological Department and Shantou University Medical College for providing the platform for our research.

Author information

Affiliations

Authors

Contributions

GGS supervised the overall project, contributed reagents/materials/analysis tools, helped with the writing, and reviewed the paper. DFS performed the experiments and drafted the paper. GGS, DFS, and HC designed the experiments and analyzed the data. FFG, YMZ, and YDN provided technical guidance for the experiments and partly contributed reagents. WFC and BW aided in experimental critique, paper preparation, and figure preparation. BZC, QZ, and YBW provided support for the in vivo experiments, and ML and RJC provided support for the in vitro experiments.

Corresponding author

Correspondence to Gang-gang Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

41401_2021_630_MOESM1_ESM.tif

Supplementary Figure S1-S3

41401_2021_630_MOESM2_ESM.tif

Supplementary Figure S4-S6

41401_2021_630_MOESM3_ESM.docx

Supplementary Figure Legends

41401_2021_630_MOESM4_ESM.docx

Supplementary Table S1-S3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Df., Cheng, H., Cai, Bz. et al. N-n-Butyl haloperidol iodide ameliorates liver fibrosis and hepatic stellate cell activation in mice. Acta Pharmacol Sin (2021). https://doi.org/10.1038/s41401-021-00630-7

Download citation

Keywords

  • liver fibrosis
  • N-n-butyl haloperidol iodide
  • antifibrotic
  • c-Jun
  • TGFBR2
  • TGF-β signaling
  • human hepatic stellate cell line LX-2

Search

Quick links