Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Caffeine promotes angiogenesis through modulating endothelial mitochondrial dynamics

Abstract

Caffeine induces multiple vascular effects. In this study we investigated the angiogenic effect of physiological concentrations of caffeine with focus on endothelial cell behaviors (migration and proliferation) during angiogenesis and its mitochondrial and bioenergetic mechanisms. We showed that caffeine (10–50 μM) significantly enhanced angiogenesis in vitro, evidenced by concentration-dependent increases in tube formation, and migration of human umbilical vein endothelial cells (HUVECs) without affecting cell proliferation. Caffeine (50 μM) enhanced endothelial migration via activation of cAMP/PKA/AMPK signaling pathway, which was mimicked by cAMP analog 8-Br-cAMP, and blocked by PKA inhibitor H89, adenylate cyclase inhibitor SQ22536 or AMPK inhibitor compound C. Furthermore, caffeine (50 μM) induced significant mitochondrial shortening through the increased phosphorylation of mitochondrial fission protein dynamin-related protein 1 (Drp1) in HUVECs, which increased its activity to regulate mitochondrial fission. Pharmacological blockade of Drp1 by Mdivi-1 (10 μM) or disturbance of mitochondrial fission by Drp1 silencing markedly suppressed caffeine-induced lamellipodia formation and endothelial cell migration. Moreover, we showed that caffeine-induced mitochondrial fission led to accumulation of more mitochondria in lamellipodia regions and augmentation of mitochondrial energetics, both of which were necessary for cell migration. In a mouse model of hindlimb ischemia, administration of caffeine (0.05% in 200 mL drinking water daily, for 14 days) significantly promoted angiogenesis and perfusion as well as activation of endothelial AMPK signaling in the ischemic hindlimb. Taken together, caffeine induces mitochondrial fission through cAMP/PKA/AMPK signaling pathway. Mitochondrial fission is an integral process in caffeine-induced endothelial cell migration by altering mitochondrial distribution and energetics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Caffeine enhanced angiogenesis in vitro.
Fig. 2: Caffeine promotes endothelial cell motility via cAMP/PKA/AMPK signaling.
Fig. 3: Caffeine increased mitochondrial fission in endothelial cells.
Fig. 4: Mitochondrial fission is essential for caffeine-induced lamellipodia formation and migration in endothelial cells.
Fig. 5: Functional importance of mitochondrial energetics in caffeine-induced lamellipodia formation and endothelial cell migration.
Fig. 6: The cAMP/PKA/AMPK signaling pathway contributes to caffeine-induced mitochondrial fission and mitochondrial distribution to lamellipodia region.
Fig. 7: Caffeine enhanced ischemia-induced angiogenesis in vivo.
Fig. 8: Caffeine enhances the angiogenesis of endothelial cells via cAMP/PKA/AMPK signaling-mediated mitochondrial fission.

References

  1. 1.

    Bian X, Ma K, Zhang C, Fu X. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther. 2019;10:158.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49:507–21.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation. 2004;109:2692–7.

    PubMed  Article  Google Scholar 

  4. 4.

    Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation. 2004;109:2487–91.

    PubMed  Article  Google Scholar 

  5. 5.

    Herbert SP, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2011;12:551–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010;22:617–25.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5:434–8.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 1999;13:1055–66.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11:872–84.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32:4814–24.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Wang L, Yu T, Lee H, O’Brien DK, Sesaki H, Yoon Y. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia. Cardiovasc Res. 2015;106:272–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Toyama EQ, Herzig S, Courchet J, Lewis TL Jr., Loson OC, Hellberg K, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission response energy stress. Science. 2016;351:275–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Poleszak E, Szopa A, Wyska E, Kukula-Koch W, Serefko A, Wosko S, et al. Caffeine augments the antidepressant-like activity of mianserin and agomelatine in forced swim and tail suspension tests in mice. Pharmacol Rep. 2016;68:56–61.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Mitchell DC, Knight CA, Hockenberry J, Teplansky R, Hartman TJ. Beverage caffeine intakes in the U.S. Food Chem Toxicol. 2014;63:136–42.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Dragicevic N, Delic V, Cao C, Copes N, Lin X, Mamcarz M, et al. Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer’s mice and cells. Neuropharmacology. 2012;63:1368–79.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Ale-Agha N, Goy C, Jakobs P, Spyridopoulos I, Gonnissen S, Dyballa-Rukes N, et al. CDKN1B/p27 is localized in mitochondria and improves respiration-dependent processes in the cardiovascular system-new mode of action for caffeine. PLoS Biol. 2018;16:e2004408.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Xu Y, Wang Y, Yan S, Zhou Y, Yang Q, Pan Y, et al. Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis. EMBO Mol Med. 2017;9:1263–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Levine YC, Li GK, Michel T. Agonist-modulated regulation of AMP-activated protein kinase (AMPK) in endothelial cells. Evidence for an AMPK -> Rac1 -> Akt -> endothelial nitric-oxide synthase pathway. J Biol Chem. 2007;282:20351–64.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Peyton KJ, Liu XM, Yu Y, Yates B, Durante W. Activation of AMP-activated protein kinase inhibits the proliferation of human endothelial cells. J Pharmacol Exp Ther. 2012;342:827–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    da Silva AF, Mariotti FR, Maximo V, Campello S. Mitochondria dynamism: of shape, transport and cell migration. Cell Mol Life Sci. 2014;71:2313–24.

    PubMed  Google Scholar 

  21. 21.

    Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007;282:11521–9.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Goveia J, Stapor P, Carmeliet P. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Mol Med. 2014;6:1105–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100:782–94.

  24. 24.

    Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, et al. The biology of mitochondrial uncoupling proteins. Diabetes. 2004;53 Suppl 1:S130–5.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Sawada N, Jiang A, Takizawa F, Safdar A, Manika A, Tesmenitsky Y, et al. Endothelial PGC-1alpha mediates vascular dysfunction in diabetes. Cell Metab. 2014;19:246–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Echeverri D, Montes FR, Cabrera M, Galan A, Prieto A. Caffeine’s vascular mechanisms of action. Int J Vasc Med. 2010;2010:834060.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Li H, Jin SY, Son HJ, Seo JH, Jeong GB. Caffeine-induced endothelial cell death and the inhibition of angiogenesis. Anat Cell Biol. 2013;46:57–67.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Yeh CH, Liao YF, Chang CY, Tsai JN, Wang YH, Cheng CC, et al. Caffeine treatment disturbs the angiogenesis of zebrafish embryos. Drug Chem Toxicol. 2012;35:361–5.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Chen YH, Huang YH, Wen CC, Wang YH, Chen WL, Chen LC, et al. Movement disorder and neuromuscular change in zebrafish embryos after exposure to caffeine. Neurotoxicol Teratol. 2008;30:440–7.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Christian MS, Brent RL. Teratogen update: evaluation of the reproductive and developmental risks of caffeine. Teratology. 2001;64:51–78.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Simioni C, et al. Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol. 2007;72:395–406.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Xu Y, An X, Guo X, Habtetsion TG, Wang Y, Xu X, et al. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1231–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Eelen G, Cruys B, Welti J, De Bock K, Carmeliet P. Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol Metab. 2013;24:589–96.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Diebold LP, Gil HJ, Gao P, Martinez CA, Weinberg SE, Chandel NS. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat Metab. 2019;1:158–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Xue F, Janzen DM, Knecht DA. Contribution of filopodia to cell migration: a mechanical link between protrusion and contraction. Int J Cell Biol. 2010;2010:507821.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Campello S, Lacalle RA, Bettella M, Manes S, Scorrano L, Viola A. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med. 2006;203:2879–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017;37:131–56.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Xu Y, Wang Y, Yan S, Yang Q, Zhou Y, Zeng X, et al. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat Commun. 2017;8:943.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Headrick JP, Ashton KJ, Rose’meyer RB, Peart JN. Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther. 2013;140:92–111.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Zhang J, Wang Y, Liu X, Dagda RK, Zhang Y. How AMPK and PKA interplay to regulate mitochondrial function and survival in models of ischemia and diabetes. Oxid Med Cell Longev. 2017;2017:4353510.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wikstrom JD, Israeli T, Bachar-Wikstrom E, Swisa A, Ariav Y, Waiss M, et al. AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1. Mol Endocrinol. 2013;27:1706–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Zhang CS, Lin SC. AMPK promotes autophagy by facilitating mitochondrial fission. Cell Metab. 2016;23:399–401.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Hom J, Yu T, Yoon Y, Porter G, Sheu SS. Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochim Biophys Acta. 2010;1797:913–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Denton RM, Richards DA, Chin JG. Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J. 1978;176:899–906.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Denton RM, McCormack JG, Edgell NJ. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980;190:107–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    McCormack JG, Denton RM. The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart. Mol Cell Biochem. 1989;89:121–5.

    CAS  PubMed  Google Scholar 

  48. 48.

    Das AM. Regulation of the mitochondrial ATP-synthase in health and disease. Mol Genet Metab. 2003;79:71–82.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    De Marchi U, Thevenet J, Hermant A, Dioum E, Wiederkehr A. Calcium co-regulates oxidative metabolism and ATP synthase-dependent respiration in pancreatic beta cells. J Biol Chem. 2014;289:9182–94.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19:121–35.

    CAS  Article  Google Scholar 

  51. 51.

    Baljinnyam E, Umemura M, Chuang C, De Lorenzo MS, Iwatsubo M, Chen S, et al. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling. Pigment Cell Melanoma Res. 2014;27:611–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant numbers: 81700395 and 81870217); the Key Project of Department of Education of Guangdong Province (Grant number: 2018KZDXM053); the Science and Technology Planning Project of Guangzhou (Grant numbers: 201903010005 and 202002030190) and “Yangcheng Scholars” Research Project by Guangzhou Education Bureau (Grant number: 201831843).

Author information

Affiliations

Authors

Contributions

YMX contributed to the conception and design; LTW, PCH, AQL, KXC, JWY, SG, LJ, LY, and XYD contributed to the acquisition of data or analysis and interpretation of data; LTW and YMX drafted the paper; YMX, DF, and NT supervised the experiments. All authors read and approved the final version to be published.

Corresponding authors

Correspondence to Yi-ming Xu or Ning Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Lt., He, Pc., Li, Aq. et al. Caffeine promotes angiogenesis through modulating endothelial mitochondrial dynamics. Acta Pharmacol Sin (2021). https://doi.org/10.1038/s41401-021-00623-6

Download citation

Keywords

  • caffeine
  • angiogenesis
  • endothelial cells
  • migration
  • mitochondrial dynamics
  • cAMP/PKA/AMPK signaling
  • mouse model of hindlimb ischemia

Search

Quick links