Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Virus against virus: strategies for using adenovirus vectors in the treatment of HPV-induced cervical cancer

Abstract

Although most human papillomavirus (HPV) infections are harmless, persistent infection with high-risk types of HPV is known to be the leading cause of cervical cancer. Following the infection of the epithelium and integration into the host genome, the oncogenic proteins E6 and E7 disrupt cell cycle control by inducing p53 and retinoblastoma (Rb) degradation. Despite the FDA approval of prophylactic vaccines, there are still issues with cervical cancer treatment; thus, many therapeutic approaches have been developed to date. Due to strong immunogenicity, a high capacity for packaging foreign DNA, safety, and the ability to infect a myriad of cells, adenoviruses have drawn attention of researchers. Adenovirus vectors have been used for different purposes, including as oncolytic agents to kill cancer cells, carrier for RNA interference to block oncoproteins expression, vaccines for eliciting immune responses, especially in cytotoxic T lymphocytes (CTLs), and gene therapy vehicles for restoring p53 and Rb function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3: Genome structure of adenovirus serotype 5 and different generations of adenovirus vectors.
Fig. 4: Different strategies for using adenovirus vectors in the treatment of HPV-induced cervical cancer.

References

  1. 1.

    LaVigne K, Leitao MM. Cervical cancer prevention. Fundam Cancer Prev Fourth Ed. 2019;13:629–52.

    Article  Google Scholar 

  2. 2.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Article  Google Scholar 

  3. 3.

    Pelkofski E, Stine J, Wages NA, Gehrig PA, Kim KH, Cantrell LA. Cervical Cancer in Women Aged 35 Years and Younger. Clin Ther. 2016;38:459–66.

    PubMed  Article  Google Scholar 

  4. 4.

    Momenimovahed Z, Salehiniya H. Incidence, mortality and risk factors of cervical cancer in the world. Biomed Res Ther. 2017;4:1795.

    Article  Google Scholar 

  5. 5.

    Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393:169–82.

    PubMed  Article  Google Scholar 

  6. 6.

    Benard VB, Johnson CJ, Thompson TD, Roland KB, Sue ML, Cokkinides V, et al. Examining the association between socioeconomic status and potential human papillomavirus-associated cancers. Cancer. 2008;113:2910–8.

    PubMed  Article  Google Scholar 

  7. 7.

    Ganesan S, Michael JC, Subbiah V. Associated factors with cervical pre-malignant lesions among the married fisher women community at Sadras, Tamil Nadu. Asia-Pac J Oncol Nurs. 2015;2:42–50.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Rossi PG, Baldacchini F, Ronco G. The possible effects on socio-economic inequalities of introducing HPV testing as primary test in cervical cancer screening programs. Front Oncol. 2014;4:20.

    Google Scholar 

  9. 9.

    Chidyaonga-Maseko F, Chirwa ML, Muula AS. Underutilization of cervical cancer prevention services in low and middle income countries: A review of contributing factors. Pan Afr Med J. 2015;21:231.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Leinonen MK, Campbell S, Klungsøyr O, Lönnberg S, Hansen BT, Nygård M. Personal and provider level factors influence participation to cervical cancer screening: A retrospective register-based study of 1.3 million women in Norway. Prev Med (Balt). 2017;94:31–9.

    Article  Google Scholar 

  11. 11.

    Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Bzhalava D, Eklund C, Dillner J. International standardization and classification of human papillomavirus types. Virology. 2015;476:341–4.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Chabeda A, Yanez RJR, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res. 2018;5:46–58.

    PubMed  Article  Google Scholar 

  14. 14.

    Guan P, Howell-Jones R, Li N, Bruni L, De Sanjosé S, Franceschi S, et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int J Cancer. 2012;131:2349–59.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Wright TC. Natural history of HPV infections. J Fam Pract. 2009;58:S3–7.

    PubMed  Google Scholar 

  16. 16.

    Chan CK, Aimagambetova G, Ukybassova T, Kongrtay K, Azizan A. Human papillomavirus infection and cervical cancer: epidemiology, screening, and vaccination - review of current perspectives. J Oncol. 2019;2019:3257939.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Stanley M. Pathology and epidemiology of HPV infection in females. Gynecol Oncol. 2010;117:S5–10.

    PubMed  Article  Google Scholar 

  18. 18.

    Rachel Skinner S, Wheeler CM, Romanowski B, Castellsagué X, Lazcano-Ponce E, Rowena Del Rosario-Raymundo M, et al. Progression of HPV infection to detectable cervical lesions or clearance in adult women: analysis of the control arm of the VIVIANE study. Int J Cancer. 2016;138:2428–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Mirabello L, Clarke MA, Nelson CW, Dean M, Wentzensen N, Yeager M, et al. The intersection of HPV epidemiology, genomics and mechanistic studies of HPV-mediated carcinogenesis. Viruses 2018;10:80.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  20. 20.

    Georgescu SR, Mitran CI, Mitran MI, Caruntu C, Sarbu MI, Matei C, et al. New insights in the pathogenesis of HPV infection and the associated carcinogenic processes: The role of chronic inflammation and oxidative stress. J Immunol Res. 2018;2018:5315816.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Insinga RP, Dasbach EJ, Elbasha EH. Epidemiologic natural history and clinical management of Human Papillomavirus (HPV) Disease: A critical and systematic review of the literature in the development of an HPV dynamic transmission model. BMC Infect Dis. 2009;9:119.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Moscicki AB, Ma Y, Wibbelsman C, Darragh TM, Powers A, Farhat S, et al. Rate of and risks for regression of cervical intraepithelial neoplasia 2 in adolescents and young women. Obstet Gynecol. 2010;116:1373–80.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Baldwin P, Laskey R, Coleman N. Translational approaches to improving cervical screening. Nat Rev Cancer. 2003;3:217–26.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Wang X, Huang X, Zhang Y. Involvement of human papillomaviruses in cervical cancer. Front Microbiol. 2018;9:2896.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Day PM, Lowy DR, Schiller JT. Heparan sulfate-independent cell binding and infection with Furin-precleaved papillomavirus capsids. J Virol. 2008;82:12565–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JPJ. Mechanisms of cell entry by human papillomaviruses: An overview. Virol J. 2010;7:11.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Richards RM, Lowy DR, Schiller JT, Day PM. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA. 2006;103:1522–7.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Day PM, Lowy DR, Schiller JT. Papillomaviruses infect cells via a clathrin-dependent pathway. Virology. 2003;307:1–11.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Smith JL, Campos SK, Ozbun MA. Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol. 2007;81:9922–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 2007;98:1505–11.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Cullen AP, Reid R, Campion M, Lörincz AT. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J Virol. 1991;65:606–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Pirami L, Giachè V, Becciolini A. Analysis of HPV16, 18, 31, and 35 DNA in pre-invasive and invasive lesions of the uterine cervix. J Clin Pathol. 1997;50:600–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Badaracco G, Venuti A, Sedati A, Marcante ML. HPV16 and HPV18 in genital tumors: Significantly different levels of viral integration and correlation to tumor invasiveness. J Med Virol. 2002;67:574–82.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Bodelon C, Untereiner ME, Machiela MJ, Vinokurova S, Wentzensen N. Genomic characterization of viral integration sites in HPV-related cancers. Int J Cancer. 2016;139:2001–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015;47:158–63.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Schmitz M, Driesch C, Jansen L, Runnebaum IB, Dürst M. Non-random integration of the HPV genome in cervical cancer. PLoS ONE. 2012;7:e39632.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Doorbar J. Model systems of human papillomavirus-associated disease. J Pathol. 2016;238:166–79.

    PubMed  Article  Google Scholar 

  39. 39.

    Maufort JP, Shai A, Pitot HC, Lambert PF. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res. 2010;70:2924–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Müller M, Prescott EL, Wasson CW, MacDonald A. Human papillomavirus E5 oncoprotein: function and potential target for antiviral therapeutics. Future Virol. 2015;10:27–39.

    Article  CAS  Google Scholar 

  41. 41.

    Wetherill LF, Holmes KK, Verow M, Muller M, Howell G, Harris M, et al. High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J Virol. 2012;86:5341–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, et al. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer. 2011;10:140.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Thomsen P, Van Deurs B, Norrild B, Kayser L. The HPV16 E5 oncogene inhibits endocytic trafficking. Oncogene 2000;19:6023–32.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Zhang B, Srirangam A, Potter DA, Roman A. HPV16 E5 protein disrupts the c-Cbl-EGFR interaction and EGFR ubiquitination in human foreskin keratinocytes. Oncogene. 2005;24:2585–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Gu Z, Matlashewski G. Effect of human papillomavirus type 16 oncogenes on MAP kinase activity. J Virol. 1995;69:8051–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Ashrafi GH, Haghshenas MR, Marchetti B, O’Brien PM, Campo MS. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int J Cancer. 2005;113:276–83.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, et al. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. 2010;407:137–42.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Kabsch K, Alonso A. The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J Virol. 2002;76:12162–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology 2009;384:324–34.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, Forster A, et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature. 2016;529:541–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Filippova M, Johnson MM, Bautista M, Filippov V, Fodor N, Tungteakkhun SS, et al. The large and small isoforms of human papillomavirus type 16 E6 bind to and differentially affect procaspase 8 stability and activity. J Virol. 2007;81:4116–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Garnett TO, Filippova M, Duerksen-Hughes PJ. Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ. 2006;13:1915–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Thomas M, Banks L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol. 1999;80:1513–7.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem. 2004;279:25729–44.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Filippova M, Song H, Connolly JL, Dermody TS, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem. 2002;277:21730–9.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Wang X, Meyers C, Guo M, Zheng ZM. Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53-miR-34a pathway. Int J Cancer. 2011;129:1362–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Zhu Y, Han Y, Tian T, Su P, Jin G, Chen J, et al. MiR-21-5p, miR-34a, and human telomerase RNA component as surrogate markers for cervical cancer progression. Pathol Res Pract.2018;214:374–9.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Patel D, Huang SM, Baglia LA, McCance DJ. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 1999;18:5061–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Xie X, Piao L, Bullock BN, Smith A, Su T, Zhang M, et al. Targeting HPV16 E6-p300 interaction reactivates p53 and inhibits the tumorigenicity of HPV-positive head and neck squamous cell carcinoma. Oncogene. 2014;33:1037–46.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AHT, Pellegrini S, et al. The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-α. Oncogene. 1999;18:5727–37.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Shah M, Anwar MA, Park S, Jafri SS, Choi S. In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response. Sci Rep. 2015;5:1–14.

    Google Scholar 

  62. 62.

    Rincon-Orozco B, Halec G, Rosenberger S, Muschik D, Nindl I, Bachmann A, et al. Epigenetic silencing of interferon-κ in human papillomavirus type 16-positive cells. Cancer Res. 2009;69:8718–25.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 2004;18:2269–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Oh ST, Kyo S, Laimins LA. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-Rich Sp1 binding sites. J Virol. 2001;75:5559–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26:158–68.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    McLaughlin-Drubin ME, Münger K. The human papillomavirus E7 oncoprotein. Virology 2009;384:335–44.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Phelps WC, Yee CL, Münger K, Howley PM. The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell. 1988;53:539–47.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of c-myc papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 1989;8:4099–105.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 2002;277:2923–30.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Fischer M, Uxa S, Stanko C, Magin TM, Engeland K. Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci Rep. 2017;7:1–11.

    Article  CAS  Google Scholar 

  71. 71.

    Songock WK. Kim S man, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res. 2017;231:56–75.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Toussaint-Smith E, Donner DB, Roman A. Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene. 2004;23:2988–95.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Goradel NH, Ghiyami-Hour F, Jahangiri S, Negahdari B, Sahebkar A, Masoudifar A, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol.2018;233:2902–10.

    Article  CAS  Google Scholar 

  75. 75.

    Goradel NH, Asghari MH, Moloudizargari M, Negahdari B, Haghi-Aminjan H, Abdollahi M. Melatonin as an angiogenesis inhibitor to combat cancer: mechanistic evidence. Toxicol Appl Pharmacol. 2017;335:56–63.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A. Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol. 2019;234:1099–110.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Gupta G, Glueck R, Patel PR. HPV vaccines: Global perspectives. Hum Vaccin Immunother. 2017;13:1421–4.

    PubMed Central  Article  PubMed  Google Scholar 

  78. 78.

    Vujadinovic M, Khan S, Oosterhuis K, Uil TG, Wunderlich K, Damman S, et al. Adenovirus based HPV L2 vaccine induces broad cross-reactive humoral immune responses. Vaccine. 2018;36:4462–70.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Wu WH, Alkutkar T, Karanam B, Roden RB, Ketner G, Ibeanu OA. Capsid display of a conserved human papillomavirus L2 peptide in the adenovirus 5 hexon protein: A candidate prophylactic HPV vaccine approach. Virol J. 2015;12:140.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Arbyn M, Xu L, Simoens C, Martin-Hirsch PPL. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst Rev. 2018;2018:CD009069.

    PubMed Central  PubMed  Google Scholar 

  81. 81.

    Cordeiro MN, De Lima R de CP, Paolini F, Melo AR da S, Campos APF, Venuti A, et al. Current research into novel therapeutic vaccines against cervical cancer. Expert Rev Anticancer Ther. 2018;18:365–76.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Yang A, Farmer E, Wu TC, Hung CF. Perspectives for therapeutic HPV vaccine development. J Biomed Sci. 2016;23:1–19.

    Article  CAS  Google Scholar 

  83. 83.

    Liu T-Y, Hussein WM, Toth I, Skwarczynski M. Advances in peptide-based human papillomavirus therapeutic vaccines. Curr Top Med Chem. 2012;12:1581–92.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Su JH, Wu A, Scotney E, Ma B, Monie A, Hung CF, et al. Immunotherapy for cervical cancer: research status and clinical potential. BioDrugs. 2010;24:109–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Cheng MA, Farmer E, Huang C, Lin J, Hung CF, Wu TC, Therapeutic DNA. Vaccines for human papillomavirus and associated diseases. Hum Gene Ther. 2018;29:971–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Benencia F, Courrèges MC, Coukos G. Whole tumor antigen vaccination using dendritic cells: comparison of RNA electroporation and pulsing with UV-irradiated tumor cells. J Transl Med. 2008;6:21.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87.

    Kim JH, Kang TH, Noh KH, Bae HC, Kim SH, Yoo YD, et al. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8+ T cell-mediated cell death. Immunol Lett. 2009;122:58–67.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Peng S, Kim TW, Lee JH, Yang MU, Liangmei HE, Hung CF, et al. Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther. 2005;16:584–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Santin A, Bellone S, Roman J, Burnett A, Cannon M, Pecorelli S. Therapeutic vaccines for cervical cancer: dendritic cell-based immunotherapy. Curr Pharm Des. 2005;11:3485–500.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Chang EY, Chen CH, Ji H, Wang TL, Hung K, Lee BP, et al. Antigen-specific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell-based vaccine. Int J Cancer. 2000;86:725–30.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Mikysková R, Indrová M, Símová J, Jandlová T, Bieblová J, Jinoch P, et al. Treatment of minimal residual disease after surgery or chemotherapy in mice carrying HPV16-associated tumours: cytokine and gene therapy with IL-2 and GM-CSF. Int J Oncol. 2004;24:161–7.

    PubMed  Google Scholar 

  92. 92.

    Yang A, Jeang J, Cheng K, Cheng T, Yang B, Wu TC, et al. Current state in the development of candidate therapeutic HPV vaccines. Expert Rev Vaccines. 2016;15:989–1007.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Lin K, Roosinovich E, Ma B, Hung CF, Wu TC. Therapeutic HPV DNA vaccines. Immunol Res. 2010;47:86–112.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Miles B, Safran HP, Monk BJ. Therapeutic options for treatment of human papillomavirus-associated cancers - novel immunologic vaccines: ADXS11–001. Gynecol Oncol Res Pract. 2017;4:10.

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Reddy VS, Nemerow GR. Structures and organization of adenovirus cement proteins provide insights into the role of capsid maturation in virus entry and infection. Proc Natl Acad Sci USA 2014;111:11715–20.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic adenovirus—a nova for gene-targeted oncolytic viral therapy in HCC. Front Oncol. 2019;9:1182.

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Dai X, Wu L, Sun R, Zhou ZH. Atomic structures of minor proteins VI and VII in human adenovirus. J Virol. 2017;91:e00850–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Nattress CB, Halldén G. Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Lett. 2018;434:56–69.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, et al. Oncolytic adenovirus: a tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol. 2019;234:8636–46.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Davison AJ, Benko M, Harrach B. Genetic content and evolution of adenoviruses. J Gen Virol. 2003;84:2895–908.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: a look back and ahead on gene transfer technology. N Microbiol. 2013;36:1–22.

    CAS  Google Scholar 

  102. 102.

    Goradel NH, Baker AT, Arashkia A, Ebrahimi N, Ghorghanlu S, Negahdari B. Oncolytic virotherapy: challenges and solutions. Curr Probl Cancer. 2021;45:100639.

    PubMed  Article  Google Scholar 

  103. 103.

    O’Riordan CR, Lachapelle A, Delgado C, Parkes V, Wadsworth SC, Smith AE, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther. 1999;10:1349–58.

    PubMed  Article  Google Scholar 

  104. 104.

    Choi IK, Yun CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther. 2013;20:70–6.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Crystal RG. Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther. 2014;25:3–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Wold W, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther. 2014;13:421–33.

    Article  Google Scholar 

  107. 107.

    Vorburger SA, Hunt KK. Adenoviral gene therapy. Oncologist. 2002;7:46–59.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Brunetti-Pierri N, Ng P. Helper-dependent adenoviral vectors. In: Adenoviral vectors for gene therapy: second edition. Elsevier Inc.; 2016. p. 423–450. https://doi.org/10.1016/B978-0-12-800276-6.00017-6.

  109. 109.

    Zhang WW, Li L, Li D, Liu J, Li X, Li W, et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum Gene Ther. 2018;29:160–79.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Liang M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets. 2018;18:171–6.

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Pesonen S, Kangasniemi L, Hemminki A. Oncolytic adenoviruses for the treatment of human cancer: focus on translational and clinical data. Mol Pharmacol. 2011;8:12–28.

    CAS  Article  Google Scholar 

  112. 112.

    Bauerschmitz GJ, Kanerva A, Wang M, Herrmann I, Shaw DR, Strong TV, et al. Evaluation of a selectively oncolytic adenovirus for local and systemic treatment of cervical cancer. Int J Cancer. 2004;111:303–9.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Heideman DAM, Steenbergen RDM, van der Torre J, Scheffner M, Alemany R, Gerritsen WR, et al. Oncolytic adenovirus expressing a p53 variant resistant to degradation by HPV E6 protein exhibits potent and selective replication in cervical cancer. Mol Ther. 2005;12:1083–90.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Yoon AR, Kim JH, Lee YS, Kim H, Yoo JY, Sohn JH, et al. Markedly enhanced cytolysis by E1B-19kD-deleted oncolytic adenovirus in combination with cisplatin. Hum Gene Ther. 2006;17:379–90.

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Mi J, Li ZY, Ni S, Steinwaerder D, Lieber A. Induced apoptosis supports spread of adenovirus vectors in tumors. Hum Gene Ther. 2001;12:1343–52.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Wang W, Xia X, Wang S, Sima N, Li Y, Han Z, et al. Oncolytic adenovirus armed with human papillomavirus E2 gene in combination with radiation demonstrates synergistic enhancements of antitumor efficacy. Cancer Gene Ther. 2011;18:825–36.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Chu RL, Post DE, Khuri FR, Van Meir EG. Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res. 2004;10:5299–312.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Wang W, Sima N, Kong D, Luo A, Gao Q, Liao S, et al. Selective targeting of HPV-16 E6/E7 in cervical cancer cells with a potent oncolytic adenovirus and its enhanced effect with radiotherapy in vitro and vivo. Cancer Lett. 2010;291:67–75.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    zhong XJ, lan ZJ, Guo ZW. Antisense RNA: the new favorite in genetic research. J Zhejiang Univ Sci B. 2018;19:739–49.

    Article  Google Scholar 

  120. 120.

    Hamada K, Shirakawa T, Gotoh A, Roth JA, Follen M. Adenovirus-mediated transfer of human papillomavirus 16 E6/E7 antisense RNA and induction of apoptosis in cervical cancer. Gynecol Oncol. 2006;103:820–30.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Bonetta AC, Mailly L, Robinet E, Travé G, Masson M, Deryckere F. Artificial microRNAs against the viral E6 protein provoke apoptosis in HPV positive cancer cells. Biochem Biophys Res Commun. 2015;465:658–64.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Ramirez J, Poirson J, Foltz C, Chebaro Y, Schrapp M, Meyer A, et al. Targeting the two oncogenic functional sites of the HPV E6 oncoprotein with a high-affinity bivalent ligand. Angew Chem Int Ed Engl. 2015;54:7958–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Çuburu N, Khan S, Thompson CD, Kim R, Vellinga J, Zahn R, et al. Adenovirus vector-based prime-boost vaccination via heterologous routes induces cervicovaginal CD8+ T cell responses against HPV16 oncoproteins. Int J Cancer. 2018;142:1467–79.

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, et al. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med. 2007;13:857–61.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ. Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell. 2002;110:789–99.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Wu J, Chen G, Zhuang FC, Gao M, Wu CD, He ZL, et al. Long-term toxicity, pharmacokinetics and immune effects of a recombinant adenovirus vaccine expressing human papillomavirus 16 E6 and E7 proteins (HPV16 E6E7-Ad5 Vac) in primates. Am J Transl Res. 2018;10:1539–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Jin HS, Park EK, Lee JM, Namkoong SE, Kim DG, Lee YJ, et al. Immunization with adenoviral vectors carrying recombinant IL-12 and E7 enhanced the antitumor immunity to human papillomavirus 16-associated tumor. Gynecol Oncol. 2005;97:559–67.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Ahn WS, Bae SM, Kim TY, Kim TG, Lee JM, Namkoong SE, et al. A therapy modality using recombinant IL-12 adenovirus plus E7 protein in a human papillomavirus 16 E6/E7-associated cervical cancer animal model. Hum Gene Ther. 2003;14:1389–99.

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Germann T, Gately MK, Schoenhaut DS, Lohoff M, Mattner F, Fischer S, et al. Interleukin‐12/T cell stimulating factor, a cytokine with multiple effects on T helper type 1 (Th1) but not on Th2 cells. Eur J Immunol. 1993;23:1762–70.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170:827–45.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Gomez-Gutierrez JG, Elpek KG, Montes De Oca-Luna R, Shirwan H, Sam Zhou H, McMasters KM. Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol Immunother. 2007;56:997–1007.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Basu S, Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med. 1999;189:797–802.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 1996;5:103–14.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Tillman BW, Hayes TL, DeGruijl TD, Douglas JT, Curiel DT. Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res. 2000;60:5456–63.

    CAS  PubMed  Google Scholar 

  135. 135.

    Liu DW, Tsao YP, Hsieh CH, Hsieh JT, Kung JT, Chiang CL, et al. Induction of CD8 T cells by vaccination with recombinant adenovirus expressing human papillomavirus type 16 E5 gene reduces tumor growth. J Virol. 2000;74:9083–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Brandsma JL, Shlyankevich M, Zhang L, Slade MD, Goodwin EC, Peh W, et al. Vaccination of rabbits with an adenovirus vector expressing the papillomavirus E2 protein leads to clearance of papillomas and infection. J Virol. 2004;78:116–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Ahn WS, Han YJ, Bae SM, Kim TH, Rho MS, Lee JM, et al. Differential suppression of human cervical cancer cell growth by adenovirus delivery of p53 in vitro: arrest phase of cell cycle is dependent on cell line. Jpn J Cancer Res. 2002;93:1012–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Hamada K, Alemany R, Zhang WW, Hittelman WN, Lotan R, Roth JA, et al. Adenovirus-mediated transfer of a wild-type p53 gene and induction of apoptosis in cervical cancer. Cancer Res. 1996;56:3047–54.

    CAS  PubMed  Google Scholar 

  139. 139.

    Hamada K, Zhang WW, Alemany R, Wolf J, Roth JA, Mitchell MF. Growth inhibition of human cervical cancer cells with the recombinant adenovirus p53 in vitro. Gynecol Oncol. 1996;60:373–9.

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Liu YL, Zheng XL, Liu FM. The mechanism and inhibitory effect of recombinant human P53 adenovirus injection combined with paclitaxel on human cervical cancer cell HeLa. Eur Rev Med Pharmacol Sci. 2015;19:1037–42.

    PubMed  Google Scholar 

  141. 141.

    Xiao J, Zhou J, Fu M, Liang LI, Deng Q, Liu X, et al. Efficacy of recombinant human adenovirus-p53 combined with chemotherapy for locally advanced cervical cancer: a clinical trial. Oncol Lett. 2017;13:3676–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Su X, Chen WJ, Xiao SW, Li XF, Xu G, Pan JJ, et al. Effect and safety of recombinant adenovirus-p53 transfer combined with radiotherapy on long-term survival of locally advanced cervical cancer. Hum Gene Ther. 2016;27:1008–14.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Prabhu NS, Blagosklonny MV, Zeng YX, Wu GS, Waldman T, El-Deiry WS. Suppression of cancer cell growth by adenovirus expressing p21(WAF1/CIP1) deficient in PCNA interaction. Clin Cancer Res. 1996;2:1221–9.

    CAS  PubMed  Google Scholar 

  144. 144.

    Jost CA, Marin MC, Kaelin WG. P73 is a human p53-related protein that can induce apoptosis. Nature. 1997;389:191–4.

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90:809–19.

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Prabhu N, Somasundaram K, Satyamoorthy K, Herlyn M, El-Deiry WS. p73ß, unlike p53, suppresses growth and induces apoptosis of human papillomavirus E6-expressing cancer cells. Int J Oncol. 1998;13:5–9.

    CAS  PubMed  Google Scholar 

  147. 147.

    Das S, El-Deiry WS, Somasundaram K. Efficient growth inhibition of HPV 16 E6-expressing cells by an adenovirus-expressing p53 homologue p73β. Oncogene. 2003;22:8394–402.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Bourgo RJ, Braden WA, Wells SI, Knudsen ES. Activation of the retinoblastoma tumor suppressor mediates cell cycle inhibition and cell death in specific cervical cancer cell lines. Mol Carcinog. 2009;48:45–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Ip SM, Huang TG, Yeung WSB, Ngan HYS. pRb-expressing adenovirus Ad5-Rb attenuates the p53-induced apoptosis in cervical cancer cell lines. Eur J Cancer. 2001;37:2475–83.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Babak Negahdari or Hami Kaboosi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghanaat, M., Goradel, N.H., Arashkia, A. et al. Virus against virus: strategies for using adenovirus vectors in the treatment of HPV-induced cervical cancer. Acta Pharmacol Sin (2021). https://doi.org/10.1038/s41401-021-00616-5

Download citation

Keywords

  • adenovirus
  • cervical Cancer
  • HPV Infection
  • HPV Oncoproteins
  • human Papillomavirus
  • vaccine

Further reading

Search

Quick links