Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exosomes are involved in total body irradiation-induced intestinal injury in mice


Ionizing radiation-induced intestinal injury is a catastrophic complication in patients receiving radiotherapy. Circulating exosomes from patients undergoing radiotherapy can mediate communication between cells and facilitate a variety of pathological processes in vivo, but its effects on ionizing radiation-induced intestinal damage are undetermined. In this study we investigated the roles of exosomes during total body irradiation (TBI)-induced intestinal injury in vivo and in vitro. We isolated exosomes from serum of donor mice 24 h after lethal dose (9 Gy) TBI (Exo-IR-24h), then intravenously injected the exosomes into receipt mice, and found that Exo-IR-24h injection not only exacerbated 9 Gy TBI-induced lethality and weight loss, but also promoted crypt-villus structural and functional injury of the small intestine in receipt mice. Moreover, Exo-IR-24h injection significantly enhanced the apoptosis and DNA damage of small intestine in receipt mice following TBI exposure. In murine intestinal epithelial MODE-K cells, treatment with Exo-IR-24h significantly promoted 4 Gy ionizing radiation-induced apoptosis, resulting in decreased cell vitality. We further demonstrated that Exo-IR-24h promoted the IR-induced injury in receipt mice partially through its DNA damage-promoting effects and attenuating Nrf2 antioxidant response in irradiated MODE-K cells. In addition, TBI-related miRNAs and their targets in the exosomes of mice were enriched functionally using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, injection of GW4869 (an inhibitor of exosome biogenesis and release, 1.25 mg·kg−1·d−1, ip, for 5 consecutive days starting 3 days before radiation exposure) was able to rescue mice against 9 Gy TBI-induced lethality and intestinal damage. Collectively, this study reveals that exosomes are involved in TBI-induced intestinal injury in mice and provides a new target to protect patients against irradiation-induced intestinal injury during radiotherapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Exo-IR-24h decreases the survival rate of mice after TBI.
Fig. 2: Exo-IR-24h enhances TBI-induced small intestinal damage in mice.
Fig. 3: Exo-IR-24h attenuates ISC survival and abolishes the regeneration of intestinal cells after TBI.
Fig. 4: Exo-IR-24h promotes apoptosis and DNA damage in the small intestines of mice exposed to TBI.
Fig. 5: Exo-IR-24h suppresses cell proliferation and enhances oxidative DNA damage in irradiated MODE-K cells.
Fig. 6: Exo-IR-24h promotes IR-induced DNA damage and apoptosis by attenuating the Nrf2-mediated antioxidant response in MODE-K cells.
Fig. 7: Total body irradiation modulates the expression levels of exosomal miRNAs in mice.
Fig. 8: The GO biological processes and KEGG pathways significantly enriched with putative genes targeted by the exosomal microRNAs.
Fig. 9: Total body irradiation induces intestinal injury through serum exosomal miRNAs in mice.
Fig. 10: Exosomes are involved in total body irradiation-induced intestinal injury in mice.


  1. 1.

    Dutta A, Gupta ML, Verma S. Podophyllotoxin and rutin in combination prevents oxidative stress mediated cell death and advances revival of mice gastrointestine following lethal radiation injury. Free Radic Res. 2018;52:103–17.

    CAS  PubMed  Google Scholar 

  2. 2.

    Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, et al. Characterizing the natural history of acute radiation syndrome of the gastrointestinal tract: combining high mass and spatial resolution using maldi-fticr-msi. Health Phys. 2019;116:454–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    MacVittie TJ, Farese AM, Parker GA, Jackson W 3rd, Booth C, Tudor GL, et al. The gastrointestinal subsyndrome of the acute radiation syndrome in rhesus macaques: a systematic review of the lethal dose-response relationship with and without medical management. Health Phys. 2019;116:305–38.

    CAS  PubMed  Google Scholar 

  4. 4.

    Cao J, Li H, Yuan R, Dong Y, Wu J, Wang M, et al. Protective effects of new aryl sulfone derivatives against radiation-induced hematopoietic injury. J Radiat Res. 2020;61:388–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Xu G, Wu H, Zhang J, Li D, Wang Y, Wang Y, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med. 2015;87:15–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chiba M, Uehara H, Niiyama I, Kuwata H, Monzen S. Changes in mirna expressions in the injured small intestine of mice following highdose radiation exposure. Mol Med Rep. 2020;21:2452–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Dong Y, Cheng Y, Hou Q, Wu J, Li D, Tian H. The protective effect of new compound xh-103 on radiation-induced gi syndrome. Oxid Med Cell Longev. 2018;2018:3920147.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Holler V, Buard V, Roque T, Squiban C, Benderitter M, Flamant S, et al. Early and late protective effect of bone marrow mononuclear cell transplantation on radiation-induced vascular dysfunction and skin lesions. Cell Transpl. 2019;28:116–28.

    Google Scholar 

  9. 9.

    Lu L, Jiang M, Zhu C, He J, Fan S. Amelioration of whole abdominal irradiation-induced intestinal injury in mice with 3,3’-diindolylmethane (dim). Free Radic Biol Med. 2019;130:244–55.

    CAS  PubMed  Google Scholar 

  10. 10.

    Jabbour SK, Patel S, Herman JM, Wild A, Nagda SN, Altoos T, et al. Intensity-modulated radiation therapy for rectal carcinoma can reduce treatment breaks and emergency department visits. Int J Surg Oncol. 2012;2012:891067.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:75.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Su X, Shen Y, Jin Y, Weintraub NL, Tang YL. Identification of critical molecular pathways involved in exosome-mediated improvement of cardiac function in a mouse model of muscular dystrophy. Acta Pharmacol Sin. 2020.

  13. 13.

    Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal mir-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9:191.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Murdica V, Giacomini E, Makieva S, Zarovni N, Candiani M, Salonia A, et al. In vitro cultured human endometrial cells release extracellular vesicles that can be uptaken by spermatozoa. Sci Rep. 2020;10:8856.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sun XH, Wang YT, Li GF, Zhang N, Fan L. Serum-derived three-circrna signature as a diagnostic biomarker for hepatocellular carcinoma. Cancer Cell Int. 2020;20:226.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Zhou X, Xie F, Wang L, Zhang L, Zhang S, Fang M, et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 2020;17:323–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Rao Q, Zuo B, Lu Z, Gao X, You A, Wu C, et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology. 2016;64:456–72.

    CAS  PubMed  Google Scholar 

  18. 18.

    Li SP, Lin ZX, Jiang XY, Yu XY. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol Sin. 2018;39:542–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, et al. Implication of the p53-related mir-34c, -125b, and -203 in the osteoblastic differentiation and the malignant transformation of bone sarcomas. Cells. 2020;9:810.

    CAS  PubMed Central  Google Scholar 

  20. 20.

    Endzelins E, Berger A, Melne V, Bajo-Santos C, Sobolevska K, Abols A, et al. Detection of circulating mirnas: Comparative analysis of extracellular vesicle-incorporated mirnas and cell-free mirnas in whole plasma of prostate cancer patients. BMC Cancer. 2017;17:730.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Malla B, Aebersold DM, Dal, Pra A. Protocol for serum exosomal mirnas analysis in prostate cancer patients treated with radiotherapy. J Transl Med. 2018;16:223.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ferrao ML, Rocha MJ, Rocha E. Histological characterization of the maturation stages of the ovarian follicles of the goldfish carassius auratus (linnaeus, 1758). Anat Histol Embryol. 2020;49:749–62.

    PubMed  Google Scholar 

  23. 23.

    Wei S, Cheng F, Yu W. Pathological analysis on transurethral enucleation resection of the prostate-related prostate surgical capsule. Wideochir Inne Tech Maloinwazyjne. 2019;14:255–61.

    PubMed  Google Scholar 

  24. 24.

    Martin ML, Adileh M, Hsu KS, Hua G, Lee SG, Li C, et al. Organoids reveal that inherent radiosensitivity of small and large intestinal stem cells determines organ sensitivity. Cancer Res. 2020;80:1219–27.

    CAS  PubMed  Google Scholar 

  25. 25.

    Lee C, Choi C, Kang HS, Shin SW, Kim SY, Park HC, et al. Nod2 supports crypt survival and epithelial regeneration after radiation-induced injury. Int J Mol Sci. 2019;20:4297.

    CAS  PubMed Central  Google Scholar 

  26. 26.

    Ling Y, Suying F, Zhiliang L, Peiying J, Baoxi W, Lin L. Application of indirect immunofluorescence on the diagnosis of pemphigus. Acta Dermatovenerol Croat. 2019;27:142–5.

    PubMed  Google Scholar 

  27. 27.

    Russell JO, Lu WY, Okabe H, Abrams M, Oertel M, Poddar M, et al. Hepatocyte-specific beta-catenin deletion during severe liver injury provokes cholangiocytes to differentiate into hepatocytes. Hepatology. 2019;69:742–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the mtt assay. Cold Spring Harb Protoc. 2018;2018.

  29. 29.

    Graziani F, Pinton P, Olleik H, Pujol A, Nicoletti C, Sicre M, et al. Deoxynivalenol inhibits the expression of trefoil factors (tff) by intestinal human and porcine goblet cells. Arch Toxicol. 2019;93:1039–49.

    CAS  PubMed  Google Scholar 

  30. 30.

    Levy A, Stedman A, Deutsch E, Donnadieu F, Virgin HW, Sansonetti PJ, et al. Innate immune receptor nod2 mediates lgr5(+) intestinal stem cell protection against ros cytotoxicity via mitophagy stimulation. Proc Natl Acad Sci USA. 2020;117:1994–2003.

    CAS  PubMed  Google Scholar 

  31. 31.

    Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14:149–59.

    CAS  Google Scholar 

  32. 32.

    Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H. Induced quiescence of lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell. 2017;20:177–90.e4.

    CAS  PubMed  Google Scholar 

  33. 33.

    Takakuwa A, Nakamura K, Kikuchi M, Sugimoto R, Ohira S, Yokoi Y, et al. Butyric acid and leucine induce alpha-defensin secretion from small intestinal paneth cells. Nutrients. 2019;11:2817.

    CAS  PubMed Central  Google Scholar 

  34. 34.

    Cheung R, Kelly J, Macleod RJ. Regulation of villin by wnt5a/ror2 signaling in human intestinal cells. Front Physiol. 2011;2:58.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Khan K, Tewari S, Awasthi NP, Mishra SP, Agarwal GR, Rastogi M, et al. Flow cytometric detection of gamma-h2ax to evaluate DNA damage by low dose diagnostic irradiation. Med Hypotheses. 2018;115:22–28.

    CAS  PubMed  Google Scholar 

  36. 36.

    Liu Q, Si T, Xu X, Liang F, Wang L, Pan S. Electromagnetic radiation at 900 mhz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reprod Health. 2015;12:65.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Mizuta Y, Tokuda K, Guo J, Zhang S, Narahara S, Kawano T, et al. Sodium thiosulfate prevents doxorubicin-induced DNA damage and apoptosis in cardiomyocytes in mice. Life Sci. 2020;257:118074.

    CAS  PubMed  Google Scholar 

  38. 38.

    Wang L, Wulf GM. Not black or white but shades of gray: Homologous recombination deficiency as a continuous variable modulated by rnf168. Cancer Res. 2020;80:2720–1.

    CAS  PubMed  Google Scholar 

  39. 39.

    Zhu HF, Yan PW, Wang LJ, Liu YT, Wen J, Zhang Q, et al. Protective properties of huperzine a through activation nrf2/are-mediated transcriptional response in x-rays radiation-induced nih3t3 cells. J Cell Biochem. 2018;119:8359–67.

    CAS  PubMed  Google Scholar 

  40. 40.

    Zhou YQ, Liu DQ, Chen SP, Chen N, Sun J, Wang XM, et al. Nrf2 activation ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain. Acta Pharmacol Sin. 2020;41:1041–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Zhu B, Zhang L, Liang C, Liu B, Pan X, Wang Y, et al. Stem cell-derived exosomes prevent aging-induced cardiac dysfunction through a novel exosome/lncrna malat1/nf-kappab/tnf-alpha signaling pathway. Oxid Med Cell Longev. 2019;2019:9739258.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wang Y, Jia L, Xie Y, Cai Z, Liu Z, Shen J, et al. Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development. Atherosclerosis. 2019;289:64–72.

    CAS  PubMed  Google Scholar 

  43. 43.

    Bhanja P, Saha S, Kabarriti R, Liu L, Roy-Chowdhury N, Roy-Chowdhury J, et al. Protective role of r-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice. PLoS ONE. 2009;4:e8014.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kong F, Wu CT, Geng P, Liu C, Xiao F, Wang LS, et al. Dental pulp stem cell-derived extracellular vesicles mitigate haematopoietic damage after radiation. Stem Cell Rev Rep. 2020.

  45. 45.

    Chou DB, Frismantas V, Milton Y, David R, Pop-Damkov P, Ferguson D, et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng. 2020;4:394–406.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Zhao Z, Qu W, Wang K, Chen S, Zhang L, Wu D, et al. Bisphenol a inhibits mucin 2 secretion in intestinal goblet cells through mitochondrial dysfunction and oxidative stress. Biomed Pharmacother. 2019;111:901–8.

    CAS  PubMed  Google Scholar 

  47. 47.

    Venkateswaran K, Shrivastava A, Agrawala PK, Prasad AK, Devi SC, Manda K, et al. Mitigation of radiation-induced gastro-intestinal injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice. Sci Rep. 2019;9:14134.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Li Q, Sun Y, Jarugumilli GK, Liu S, Dang K, Cotton JL, et al. Lats1/2 sustain intestinal stem cells and wnt activation through tead-dependent and independent transcription. Cell Stem Cell. 2020;26:675–92.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Mundorf J, Donohoe CD, McClure CD, Southall TD, Uhlirova M. Ets21c governs tissue renewal, stress tolerance, and aging in the drosophila intestine. Cell Rep. 2019;27:3019–33.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Setiawan J, Kotani T, Konno T, Saito Y, Murata Y, Noda T, et al. Regulation of small intestinal epithelial homeostasis by tsc2-mtorc1 signaling. Kobe J Med Sci. 2019;64:E200–E209.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Etemadi T, Momeni HR, Ghafarizadeh AA. Impact of silymarin on cadmium-induced apoptosis in human spermatozoa. Andrologia. 2020;52:e13795.

  52. 52.

    Zhu N, Liu R, He LX, Mao RX, Liu XR, Zhang T, et al. Radioprotective effect of walnut oligopeptides against gamma radiation-induced splenocyte apoptosis and intestinal injury in mice. Molecules. 2019;24:1582.

    CAS  PubMed Central  Google Scholar 

  53. 53.

    Liu Z, Liu H, Jiang J, Tan S, Yang Y, Zhan Y, et al. Pdgf-bb and bfgf ameliorate radiation-induced intestinal progenitor/stem cell apoptosis via akt/p53 signaling in mice. Am J Physiol Gastrointest Liver Physiol. 2014;307:G1033–43.

    CAS  PubMed  Google Scholar 

  54. 54.

    Ai TJ, Sun JY, Du LJ, Shi C, Li C, Sun XN, et al. Inhibition of neddylation by mln4924 improves neointimal hyperplasia and promotes apoptosis of vascular smooth muscle cells through p53 and p62. Cell Death Differ. 2018;25:319–29.

    CAS  PubMed  Google Scholar 

  55. 55.

    Yu G, Luo H, Zhang N, Wang Y, Li Y, Huang H, et al. Loss of p53 sensitizes cells to palmitic acid-induced apoptosis by reactive oxygen species accumulation. Int J Mol Sci. 2019;20:6268.

    CAS  PubMed Central  Google Scholar 

  56. 56.

    Penha RCC, Pellecchia S, Pacelli R, Pinto LFR, Fusco A. Ionizing radiation deregulates the microrna expression profile in differentiated thyroid cells. Thyroid. 2018;28:407–21.

    CAS  PubMed  Google Scholar 

  57. 57.

    Xiao AY, Maynard MR, Piett CG, Nagel ZD, Alexander JS, Kevil CG, et al. Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma (gbm) cells. Redox Biol. 2019;26:101220.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Sharma D, De Falco L, Padavattan S, Rao C, Geifman-Shochat S, Liu CF, et al. Parp1 exhibits enhanced association and catalytic efficiency with gammah2a.X-nucleosome. Nat Commun. 2019;10:5751.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Lu M, Wang P, Qiao Y, Jiang C, Ge Y, Flickinger B, et al. Gsk3beta-mediated keap1-independent regulation of Nrf2 antioxidant response: a molecular rheostat of acute kidney injury to chronic kidney disease transition. Redox Biol. 2019;26:101275.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Resendez A, Tailor D, Graves E, Malhotra SV. Radiosensitization of head and neck squamous cell carcinoma (HNSCC) by a podophyllotoxin. ACS Med Chem Lett. 2019;10:1314–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Chaiprasongsuk A, Janjetovic Z, Kim TK, Jarrett SG, D’Orazio JA, Holick MF, et al. Protective effects of novel derivatives of vitamin d3 and lumisterol against uvb-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biol. 2019;24:101206.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Zhou Q, Huang SX, Zhang F, Li SJ, Liu C, Xi YY, et al. Micrornas: A novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif. 2017;50:e12394.

    PubMed Central  Google Scholar 

  63. 63.

    Wang W, Hu L, Chang S, Ma L, Li X, Yang Z, et al. Total body irradiation-induced colon damage is prevented by nitrate-mediated suppression of oxidative stress and homeostasis of the gut microbiome. Nitric Oxide. 2020;102:1–11.

    PubMed  Google Scholar 

  64. 64.

    Li L, Zhang K, Zhang J, Zeng YN, Lai F, Li G, et al. Protective effect of polydatin on radiation-induced injury of intestinal epithelial and endothelial cells. Biosci Rep. 2018;38:BSR20180868.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Verginadis II, Kanade R, Bell B, Koduri S, Ben-Josef E, Koumenis C. A novel mouse model to study image-guided, radiation-induced intestinal injury and preclinical screening of radioprotectors. Cancer Res. 2017;77:908–17.

    CAS  PubMed  Google Scholar 

  66. 66.

    Lewicka M, Henrykowska G, Zawadzka M, Rutkowski M, Pacholski K, Buczynski A. Impact of electromagnetic radiation emitted by monitors on changes in the cellular membrane structure and protective antioxidant effect of vitamin A–in vitro study. Int J Occup Med Environ Health. 2017;30:695–703.

    PubMed  Google Scholar 

  67. 67.

    Zhang J, Han X, Zhao Y, Xue X, Fan S. Mouse serum protects against total body irradiation-induced hematopoietic system injury by improving the systemic environment after radiation. Free Radic Biol Med. 2019;131:382–92.

    CAS  PubMed  Google Scholar 

  68. 68.

    Tai S, Yang S, Tiew A, Wong YM, Ling SY, Tay YS, et al. Radiation exposure to allied health personnel handling blood specimens from patients receiving radioactive iodine-131 and recombinant human TSH (Thyrogen®) stimulation. J Radiol Prot. 2020.

Download references


This work was supported by grants from the National Natural Science Foundation of China (No. 81803046 and No. 81730086), the Natural Science Foundation of Tianjin City (19JCQNJC09700), and the CAMS Innovation Fund for Medical Sciences (2017-I2M-B&R-13).

Author information




HL and SJF conceived the project idea and designed the experiments. HL, MJ, SYZ and SQZ performed the experiments. LL and GXF performed data analysis. XH and XW assisted in data interpretation and manuscript revision. HL drafted the article and wrote the entire manuscript. All authors commented on and approved the manuscript.

Corresponding authors

Correspondence to Hang Li or Sai-jun Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jiang, M., Zhao, Sy. et al. Exosomes are involved in total body irradiation-induced intestinal injury in mice. Acta Pharmacol Sin 42, 1111–1123 (2021).

Download citation


  • total body irradiation
  • radiation-induced intestinal injury
  • DNA damage
  • apoptosis
  • exosome
  • MicroRNA
  • GW4869


Quick links