Carnosine suppresses human glioma cells under normoxic and hypoxic conditions partly via inhibiting glutamine metabolism

Abstract

L-Carnosine (β-alanyl-L-histidine) is a naturally occurring dipeptide, which has shown broad-spectrum anticancer activity. But the anticancer mechanisms and regulators remain unknown. In this study, we investigated the effects of carnosine on human glioma U87 and U251 cell lines under normoxia (21% O2) and hypoxia (1% O2). We showed that carnosine (25−75 mM) dose-dependently inhibited the proliferation of the glioma cells; carnosine (50 mM) inhibited their colony formation, migration, and invasion capacity. But there was no significant difference in the inhibitory effects of carnosine under normoxia and hypoxia. Treatment with carnosine (50 mM) significantly decreased the expression of glutamine synthetase (GS) at the translation level rather than the transcription level in U87 and U251 cells, both under normoxia and hypoxia. Furthermore, the silencing of GS gene with shRNA and glutamine (Gln) deprivation significantly suppressed the growth, migratory, and invasive potential of the glioma cells. The inhibitory effect of carnosine on U87 and U251 cells was partly achieved by inhibiting the Gln metabolism pathway. Carnosine reduced the expression of GS in U87 and U251 cells by promoting the degradation of GS through the proteasome pathway, shortening the protein half-life, and reducing its stability. Given that targeting tumor metabolism is a proven efficient therapeutic tactic, our results may present new treatment strategies and drugs for improving the prognosis of gliomas.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Effects of carnosine on the viability, colony formation, and apoptosis of U87 and U251 cells cultured under normoxic and hypoxic conditions.
Fig. 2: Carnosine inhibited U87 and U251 cell migration and invasion under normoxia and hypoxia.
Fig. 3: Carnosine downregulated GS at only the protein expression but did not affect its RNA expression.
Fig. 4: Time- and concentration-dependent inhibitory effect of carnosine on GS expression in U87 and U251 cells under conditions of normoxia, hypoxia, Gln (4 mM) treatment, and Gln deprivation.
Fig. 5: Carnosine combined with Gln deprivation inhibited the growth of U87 and U251 cells and induced apoptosis.
Fig. 6: The inhibitory effect of carnosine on the proliferation and metastasis of U87 and U251 cells was partly achieved by inhibiting Gln metabolism.
Fig. 7: Carnosine reduced the stability of the GS protein in U87 and U251 cells, shortened the half-life of the GS protein, and accelerated degradation of the GS protein by the proteasome pathway.

References

  1. 1.

    Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392:432–46.

    PubMed  Article  Google Scholar 

  2. 2.

    Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 2018;20:iv1–iv86.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Cheng F, Guo D. MET in glioma: signaling pathways and targeted therapies. J Exp Clin Cancer Res. 2019;38:270.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Tomiyama A, Ichimura K. Signal transduction pathways and resistance to targeted therapies in glioma. Semin Cancer Biol. 2019;58:118–29.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004;64:920–7.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61:667–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Shen Y, Yang J, Li J, Shi X, Ouyang L, Tian Y, et al. Carnosine inhibits the proliferation of human gastric cancer SGC-7901 cells through both of the mitochondrial respiration and glycolysis pathways. PLoS ONE. 2014;9:e104632.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Diers AR, Broniowska KA, Chang CF, Hogg N. Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition. Biochem J. 2012;444:561–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Eagle H, Oyama VI, Levy M, Horton CL, Fleischman R. The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid. J Biol Chem. 1956;218:607–16.

    CAS  PubMed  Google Scholar 

  13. 13.

    Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15:827–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015;17:1556–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Caruso G, Caraci F, Jolivet RB. Pivotal role of carnosine in the modulation of brain cells activity: multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol. 2019;175:35–53.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Sarrami F, Yu LJ, Karton A. Computational design of bio-inspired carnosine-based HOBr antioxidants. J Comput Aided Mol Des. 2017;31:905–13.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Miceli V, Pampalone M, Frazziano G, Grasso G, Rizzarelli E, Ricordi C, et al. Carnosine protects pancreatic beta cells and islets against oxidative stress damage. Mol Cell Endocrinol. 2018;474:105–18.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Seidler NW, Yeargans GS, Morgan TG. Carnosine disaggregates glycated alpha-crystallin: an in vitro study. Arch Biochem Biophys. 2004;427:110–5.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Artioli GG, Sale C, Jones RL. Carnosine in health and disease. Eur J Sport Sci. 2019;19:30–9.

    PubMed  Article  Google Scholar 

  20. 20.

    Ditte Z, Ditte P, Labudova M, Simko V, Iuliano F, Zatovicova M, et al. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts. BMC Cancer. 2014;14:358.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Oppermann H, Faust H, Yamanishi U, Meixensberger J, Gaunitz F. Carnosine inhibits glioblastoma growth independent from PI3K/Akt/mTOR signaling. PLoS One. 2019;14:e0218972.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Cheng JY, Yang JB, Liu Y, Xu M, Huang YY, Zhang JJ, et al. Profiling and targeting of cellular mitochondrial bioenergetics: inhibition of human gastric cancer cell growth by carnosine. Acta Pharmacol Sin. 2019;40:938–48.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Cao P, Zhang J, Huang Y, Fang Y, Lyu J, Shen Y. The age-related changes and differences in energy metabolism and glutamate-glutamine recycling in the d-gal-induced and naturally occurring senescent astrocytes in vitro. Exp Gerontol. 2019;118:9–18.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Holliday R, McFarland GA. A role for carnosine in cellular maintenance. Biochem (Mosc). 2000;65:843–8.

    CAS  Google Scholar 

  25. 25.

    Rosati A, Poliani PL, Todeschini A, Cominelli M, Medicina D, Cenzato M, et al. Glutamine synthetase expression as a valuable marker of epilepsy and longer survival in newly diagnosed glioblastoma multiforme. Neuro Oncol. 2013;15:618–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Hipkiss AR, Gaunitz F. Inhibition of tumour cell growth by carnosine: some possible mechanisms. Amino Acids. 2014;46:327–37.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Pisano JJ, Wilson JD, Cohen L, Abraham D, Udenfriend S. Isolation of gamma-aminobutyrylhistidine (homocarnosine) from brain. J Biol Chem. 1961;236:499–502.

    CAS  PubMed  Google Scholar 

  28. 28.

    Renner C, Asperger A, Seyffarth A, Meixensberger J, Gebhardt R, Gaunitz F. Carnosine inhibits ATP production in cells from malignant glioma. Neurol Res. 2010;32:101–5.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Qiu J, Hauske SJ, Zhang S, Rodriguez-Nino A, Albrecht T, Pastene DO, et al. Identification and characterisation of carnostatine (SAN9812), a potent and selective carnosinase (CN1) inhibitor with in vivo activity. Amino Acids. 2019;51:7–16.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Cavazos DA, Brenner AJ. Hypoxia in astrocytic tumors and implications for therapy. Neurobiol Dis. 2016;85:227–33.

    PubMed  Article  Google Scholar 

  31. 31.

    Hauselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol. 2014;4:28. https://doi.org/10.3389/fonc.2014.00028.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104:19345–50.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Yang L, Venneti S, Nagrath D. Glutaminolysis: A Hallmark of Cancer Metabolism. Annu Rev Biomed Eng. 2017;19:163–94.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, et al. A Variant of SLC1A5 Is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 2020;31:267–83. e12

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Issaq SH, Mendoza A, Fox SD, Helman LJ. Glutamine synthetase is necessary for sarcoma adaptation to glutamine deprivation and tumor growth. Oncogenesis. 2019;8:20. https://doi.org/10.1038/s41389-019-0129-z.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Kitajima S, Lee KL, Hikasa H, Sun W, Huang RY, Yang H, et al. Hypoxia-inducible factor-1alpha promotes cell survival during ammonia stress response in ovarian cancer stem-like cells. Oncotarget. 2017;8:114481–94.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Vanhove K, Derveaux E, Graulus GJ, Mesotten L, Thomeer M, Noben JP, et al. Glutamine addiction and therapeutic strategies in lung cancer. Int J Mol Sci. 2019;20:252.

  39. 39.

    Marquez J, Alonso FJ, Mates JM, Segura JA, Martin-Rufian M, Campos-Sandoval JA. Glutamine addiction in gliomas. Neurochem Res. 2017;42:1735–46.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Fulda S. Cell death-based treatment of glioblastoma. Cell Death Dis. 2018;9:121. https://doi.org/10.1038/s41419-017-0021-8.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best Pr Res Clin Haematol. 2017;30:341–55.

    Article  Google Scholar 

  42. 42.

    Zaky W, Manton C, Miller CP, Khatua S, Gopalakrishnan V, Chandra J. The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities. Cancer Metastasis Rev. 2017;36:617–33.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Scientific Research Foundations (LY19H090010), Wenzhou City Science and Technology Project (Y20170014), and Key Discipline of Zhejiang Province in Medical Technology (First Class, Category A).

Author information

Affiliations

Authors

Contributions

YS and JXL conceived and designed the experiments; YJF and YS wrote the paper; YJF, MW, HNC, and TTW performed experiments and analyzed the data.

Corresponding author

Correspondence to Yao Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, Yj., Wu, M., Chen, Hn. et al. Carnosine suppresses human glioma cells under normoxic and hypoxic conditions partly via inhibiting glutamine metabolism. Acta Pharmacol Sin (2020). https://doi.org/10.1038/s41401-020-0488-1

Download citation

Keywords

  • glioma
  • hypoxia
  • carnosine
  • glutamine synthetase
  • proteasome
  • tumor metabolism

Further reading

Search

Quick links