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Noncoding RNAs in doxorubicin-induced cardiotoxicity
and their potential as biomarkers and therapeutic targets
Hong-ge Fa1,2, Wen-guang Chang2, Xue-juan Zhang3, Dan-dan Xiao1,2 and Jian-xun Wang1

Anthracyclines, such as doxorubicin (DOX), are well known for their high efficacy in treating multiple cancers, but their clinical
usage is limited due to their potential to induce fatal cardiotoxicity. Such detrimental effects significantly impact the overall physical
condition or even induce the morbidity and mortality of cancer survivors. Therefore, it is extremely important to understand the
mechanisms of DOX-induced cardiotoxicity to develop methods for the early detection of cytotoxicity and therapeutic applications.
Studies have shown that many molecular events are involved in DOX-induced cardiotoxicity. However, the precise mechanisms are
still not completely understood. Recently, noncoding RNAs (ncRNAs) have been extensively studied in a diverse range of regulatory
roles in cellular physiological and pathological processes. With respect to their roles in DOX-induced cardiotoxicity, microRNAs
(miRNAs) are the most widely studied, and studies have focused on the regulatory roles of long noncoding RNAs (lncRNAs) and
circular RNAs (circRNAs), which have been shown to have significant functions in the cardiovascular system. Recent discoveries on
the roles of ncRNAs in DOX-induced cardiotoxicity have prompted extensive interest in exploring candidate ncRNAs for utilization
as potential therapeutic targets and/or diagnostic biomarkers. This review presents the frontier studies on the roles of ncRNAs in
DOX-induced cardiotoxicity, addresses the possibility and prospects of using ncRNAs as diagnostic biomarkers or therapeutic
targets, and discusses the possible reasons for related discrepancies and limitations of their use.

Keywords: noncoding RNAs; doxorubicin; cardiotoxicity; biomarkers

Acta Pharmacologica Sinica (2021) 42:499–507; https://doi.org/10.1038/s41401-020-0471-x

INTRODUCTION
Doxorubicin (DOX), as a representative of the anthracycline family,
is widely used in clinical settings for a variety of malignancies,
such as breast cancer, lymphomas and leukemia [1]. DOX is also
well known for its serious cardiotoxicity, manifesting as irreversible
degenerative dilated cardiomyopathy (DCM) and the consequent
congestive heart failure (CHF), which impacts long-term antitumor
therapy outcomes [2]. In recent decades, researchers have
extensively studied and addressed the mechanisms of DOX-
induced cardiotoxicity, including DNA damage, excessive reactive
oxygen species (ROS) generation, mitochondrial dysfunction,
endoplasmic reticulum (ER)-mediated apoptosis, and disturbances
to calcium homeostasis [3–7]. However, the whole picture is still
far from being complete.
In recent years, the roles of noncoding RNAs (ncRNAs) in DOX-

induced cardiotoxicity have attracted great attention and are
considered a promising field to explore. NcRNAs have been
reported to regulate gene expression and protein functions,
thereby participating in cell proliferation, apoptosis, differentia-
tion, metabolism and many other biological processes [8].
Unsurprisingly, with the depth of current research, ncRNAs have
been shown to play key roles in DOX-induced cardiotoxicity,
which is associated with multiple mechanisms [9, 10]. Thus, we
summarize the updated research on DOX-induced cardiotoxicity
related to ncRNAs and discuss their potential as diagnostic

biomarkers and therapeutic targets. The goal of this review is to
provide a new perspective for viewing cardiotoxicity prevention
and intervention approaches during chemotherapy.

MICRORNAS AND DOX-INDUCED CARDIOTOXICITY
Introduction to microRNAs
MicroRNAs (miRNAs) are a class of endogenous single-stranded
ncRNA molecules that are ~20 nucleotides in length, and their
sequences are highly conserved among different species [11].
MiRNA regulation is mainly realized through base pairing, with
miRNA binding to specific sites of target gene messenger RNAs
(mRNAs), to exert their function of negatively regulating gene
expression [8, 12]. Clinical trials and animal experiments have shown
that miRNAs take part in various cardiovascular diseases, such as
coronary heart disease, ischemia-reperfusion injury, heart failure and
DOX-induced cardiotoxicity [9, 13–15]. Regarding DOX-induced
cardiotoxicity, many miRNAs have been reported to participate in
multiple pathological processes (Fig. 1) [9, 10, 16]. These miRNAs
target different protein mRNAs and damage heart cells by inducing
apoptosis, mitochondrial dysfunction, ROS and ER stress (Table 1).

MiRNAs and DOX-induced mitochondrial-mediated apoptosis
Several studies have suggested that apoptosis is the predominant
cellular event in DOX-induced cardiotoxicity, as evidenced by
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morphological changes and the results of TdT-mediated dUTP
nick end-labeling (TUNEL) assays, as cardiomyocytes are terminally
differentiated and cannot regenerate [17, 18]. Among the many
pathways of apoptosis, mitochondrial-dependent apoptosis has
been intensively studied. DOX-induced cardiotoxicity is closely
associated with mitochondrial morphological changes and dys-
function, as mitochondria are enriched in cardiomyocytes [3, 4].
DOX binds to abundant mitochondrial cardiolipin and forms the
DOX-cardiolipin complex. This complex disrupts the electron
transport chain (ETC), and less free cardiolipin is available for
anchoring cytochrome c [19]. In addition, DOX may directly
intercalate into mitochondrial genome-mtDNA to form adducts.
These adducts disturb normal mitochondrial functions and alter
the functions of protein subunits within a mitochondrion [20].
Additionally, DOX induces cytochrome c release from a mitochon-
drion. Cytochrome c is involved in the activation of cytoplasmic
apoptotic protease activation factor-1 (Apaf-1), ATP/dATP and
caspase-9, resulting in the initiation of the caspase cascade, which
ultimately leads to cardiomyocyte apoptosis [21].
Structurally, mitochondria are constantly undergoing fission

and fusion to maintain their functions, and excessive fission has
been shown to contribute to cardiac injury under certain
conditions, such as ischemia and DOX treatment [22, 23]. Our
previous studies focused on mitochondrial fission and DOX-
induced cardiotoxicity, and we have identified the regulatory roles
of miRNA-532-3p in DOX-induced cardiotoxicity [9]. Upon DOX
treatment, miR-532-3p is upregulated and participates in DOX-
induced mitochondrial fission and apoptosis by directly targeting
ARC, an apoptosis suppressor. Our team reported that ARC
was downregulated in pathological heart conditions, whereas
the overexpression of ARC inhibited DOX-induced mitochondrial
division, thereby attenuating myocardial apoptosis [9]. Another
study by our team showed that miR-499-5p regulates

mitochondrial fission during myocardial infarction [24]. Interest-
ingly, in our most recent study, we found that miR-499-5p
expression was reduced upon DOX treatment, which led to the
upregulation of the target p21, a transcription factor involved in
heart injury, subsequently causing mitochondrial fission and
apoptosis in DOX-induced cardiotoxicity [25]. In addition, ther-
apeutically enhanced miR-499-5p expression enhanced cardiac
functions, suggesting that the downregulation of miR-499-5p may
be the cause of DOX cardiotoxicity [25].
Functionally, DOX-related mitochondrial injury is characterized

by the loss of mitochondrial membrane permeability and
cytochrome c release [4, 21]. Heart-abundant miR-146a, which
had previously been reported to be upregulated by NF-κB,
showed an increase in neonatal rat cardiac myocytes after DOX
exposure [26]. MiR-146a enhanced the DOX-induced decrease in
mitochondrial membrane potential and cardiomyocyte apoptosis
by targeting ErbB4, which belongs to the epidermal growth factor
receptor (EGFR) family and is well known for its essential roles
during cardiac and neuronal development [26]. However, this
study did not explore whether this DOX-triggered miR-146a
dysregulation was found in vivo. In addition, the downregulation
of miR-29b negatively affected the proapoptotic protein Bax by
directly binding the Bax 3’UTR region, which activates the
mitochondria-mediated intrinsic apoptotic pathway [27]. MiR-
29b agomir ameliorated DOX-induced cardiac injury, which
showed that a decrease in miR-29b levels may be the causal
factor in DOX-induced cardiotoxicity.

MiRNAs and DOX-induced ROS-related apoptosis
Mitochondria and oxidative stress are inextricably linked in DOX-
induced cardiotoxicity, and their relationship creates a vicious
circle. DOX metabolism produces semiquinone radicals, which
then form superoxide and ROS in a series of reactions known as

Fig. 1 NcRNAs involved in different mechanisms of DOX-induced cardiac cell apoptosis.MiR-499-5p and miR-532-3p regulate DOX-induced
mitochondrial fission; miR-15b-5p, miR-23a, miR-29b, miR-146a and LincRNA-p21 regulate the DOX-induced decline in mitochondrial
membrane potential and cytochrome c release; miR-15b-5p, miR-23a, miR-30 and LincRNA-p21 regulate DOX-induced ROS production; miR-
140-5p, miR-451 and LincRNA-p21 regulate DOX-induced change of antioxidant levels; miR-378 regulates DOX-induced ER stress; miR-320a
regulates the DOX-induced impact on microvessel density; miR-21, miR-34a-5p, miR-130a, miR-208a, miR-212/132, Linc00339, LncRNA CHRF,
LncRNA Mhrt and CircRNA derived from the Ttn 105-111 gene regulate DOX-induced apoptosis with no clearly indicated mechanisms; and
LncRNA FOXC2-AS1 regulates DOX-induced reduction in cell viability.
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the redox cycle [3]. During the redox cycle, ROS are continuously
formed, and they interact with some intracellular components and
induce oxidative damage to biological macromolecules, even-
tually resulting in tissue injury [28, 29]. Mitochondria are the major
sites at which ROS are produced in the heart, and the binding of
DOX to mitochondrial cardiolipin leads to the hampers of the
activity of complex I and disrupts the ETC, resulting in increased
ROS production [30]. Elevated ROS levels can cause mtDNA
damage, which can lead to the downregulation of ETC proteins
encoded by mtDNA, exacerbating mitochondrial dysfunction [31]. In
addition, excessive ROS alter the mitochondrial respiration rate and,
together with Ca2+, augment mitochondrial permeability transition
pore (mPTP) opening, resulting in the loss of mitochondrial
membrane potential, which in turn causes the release of
cytochrome c to trigger apoptotic factors [32].
The involvement of miR-15b-5p and miR-23a in DOX-induced

cardiomyocyte apoptosis was investigated not only in the

mitochondria-related pathway but also with respect to ROS-
related mechanisms. MiR-15b-5p significantly enhanced the
effects of DOX on mitochondrial membrane permeability impair-
ment and ROS production [33]. Both the overexpression of
miR-15b-5p or the inhibition of its target, Bmpr1a, exacerbates
DOX-induced cardiomyocyte apoptosis by causing a decrease
in the Bcl-2/Bax ratio (an antiapoptotic indicator) [33]. Similarly,
miR-23a is upregulated upon DOX treatment, which can
induce excessive mitochondrial fission, leading to enhanced
phosphorylation of dynamin-related protein-1 (Drp1), suppression
of mitofusin 2 (Mfn2) and mitochondria pathway-dependent
cardiomyocyte apoptosis [34]. An miR-23a inhibitor demonstrated
protective effects on DOX-treated cardiomyocytes by restoring the
mitochondrial membrane potential and suppressing oxidative
stress by targeting PGC-1α and repressing Drp1 phosphorylation
[34]. Unfortunately, neither miR-15b-5p nor miR-23a has been
studied for its role in regulating cardiac function.

Table 1. NcRNAs in regulating DOX-induced cardiotoxicity.

NcRNA Regulation Targets Biological effects Cell type Reference

miRNAs

miR-15b-5p Up Bmpr1a Mitochondrial dysfunction, ROS &
apoptosis

Cardiomyocyte [33]

miR-21-5pa Up BTG2 Apoptosis Cardiomyocyte [44]

miR-23a-3p Up PGC-1α Mitochondrial dysfunction, ROS &
apoptosis

Cardiomyocyte [34]

miR-29b-3p Down Bax Mitochondrial dysfunction &
apoptosis

Cardiomyocyte [27]

miR-30e-5p Down β1AR,β2AR,Gia-2 & BNIP3L ROS & apoptosis Cardiomyocyte [35]

miR-34a-5p Up Sirt1/P66shc Apoptosis Cardiomyocyte [45]

miR-130a-3p Up PPARγ Apoptosis mESC-derived
cardiac cells

[46]

miR-140-5p Up Nrf2 & Sirt2 Increase of ROS Cardiomyocyte [10]

miR-146a-5p Up ErbB4 Mitochondrial dysfunction &
apoptosis

Cardiomyocyte [26]

miR-208a-3p Up GATA4 Apoptosis Cardiomyocyte [43]

miR-212-3p/miR-132-3p Down Fitm2 Apoptosis & atrophy hiPSC-derived
cardiomyocyte

[42]

miR-320a-3p Up VEGF-A Reduce cardiac microvessel density
& apoptosis

HUVEC [48]

miR-378a-5p Down LDHA & PPIA Energy metabolism disturbance &
ER stress

Cardiomyocyte [16]

miR-451-5p Up Cab39 ROS & apoptosis Cardiomyocyte [39]

miR-499-5p Down p21 Mitochondrial fission and
apoptosis

Cardiomyocyte [25]

miR-532-3p Up ARC Mitochondrial fission & apoptosis Cardiomyocyte [9]

Let-7g-5p Down – – Cardiomyocyte [47]

LncRNAs

LINC00339 Up miR-484 Apoptosis Cardiomyocyte [60]

lincRNA-p21 Up Wnt/β-catenin Oxidative stress & cardiac
senescence

Cardiomyocyte [59]

LncRNA CHRF Up TGF-β/Smads TGF-β/p38 Apoptosis Cardiomyocyte [61]

LncRNA FOXC2-AS1 Down WISP2 (intermediators in
between)

Reduce viability Cardiomyocyte [63]

LncRNA Mhrt Down Nrf2 Apoptosis Cardiomyocyte [62]

CircRNA

CircRNA derived from Ttn
105-111 gene

Upstream
Qki5- an RNA-binding
protein (RBP)

Apoptosis & atrophy Cardiomyocyte [68]

aMiRNAs in Tables 1 and 2 were indicated with the -3p or -5p suffix according to their sequences in the latest version of miRBase (The miRBase Sequence Database
- Release 22.1) to keep consistent with miRNA nomenclature. And the in-text miRNAs nomenclature is kept same with their original research articles.
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MiR-30a, miR-30d, and miR-30e were found to be downregulated
upon DOX treatment, and they share the same basal sequences,
which is predicted to target the same genes. MiR-30e showed the
greatest dysregulation among these miRNAs and has been shown to
target β1AR, β2AR, Giα-2 and BNIP3L/NIX [35]. Additionally,
activation of the BNIP3 gene led to mPTP opening, loss of
mitochondrial membrane potential and cardiomyocyte death [36].
Hence, overexpression of miR-30 reduced DOX-triggered ROS, the
Bax/Bcl-2 expression ratio, and caspase activity, which confirmed the
benefit of high miR-30 levels in cardiomyocytes [35].
Moreover, DOX also markedly decreases endogenous antiox-

idants, which accelerates oxidative stress. Therefore, the over-
expression of antioxidants shows beneficial effects [37, 38]. In vitro
and in vivo studies revealed that DOX caused an elevation of miR-
140-5p and a decrease in its targets Nrf2 and Sirt2, which control
oxidative stress by binding with antioxidant response elements
and activating FOXO3a, respectively [10]. Applying miR-140-5p
agomir to DOX-treated mice resulted in a decrease in superoxide
dismutase (SOD) activity, while an antagomir did not affect
SOD activity or enhance cardiac functions, which indicated
that upregulation of miR-140 may be critical for DOX-induced
cardiotoxicity [10]. Recently, a study revealed that miR-451
inhibition restored antioxidant-SOD activity and protected against
DOX-induced cardiomyocyte apoptosis by activating the AMPK
signaling pathway. In addition, a miR-451 inhibitor also amelio-
rated DOX-induced cardiac dysfunction [39].

MiRNAs and DOX-induced ER stress-related apoptosis
In response to DOX treatment, increased ROS levels and calcium
overload trigger myocardial ER stress, and in severe and persistent
conditions, excessive calcium can affect the mitochondrial
membrane potential and activate a range of distinct cell apoptotic
signaling pathways [40, 41]. In a study by Wang et al., miR-378
played a cardioprotective role by affecting energy metabolism and
ER stress, changing the mitochondrial membrane potential, which
correspondingly repressed mitochondria-related gene-lactate
dehydrogenase A (LDHA) and ER stress-related gene-cyclophilin
A (PPIA) expression. As a result, miR-378 promoted cardiomyocyte
viability and decreased the apoptosis rate [16].

MiRNAs and other DOX-induced mechanisms
In addition, the pro-hypertrophic miR-212/132 family attenuated
DOX-induced apoptosis and atrophy in primary rodent- and
human-induced pluripotent stem cell (hs-iPSC)-derived cardio-
myocytes [42]. DOX-treated experimental animals demonstrated
that the overexpression of the miR-212/132 cluster improved the
ejection fraction. In addition, a DOX-triggered decrease in the wall
thickness of the myocardium, which is a parameter for atrophy,
was alleviated by enhancing the miR-212/132 level. These findings
revealed that lower miR-212/132 levels may be related to DOX-
induced cardiotoxicity. At the cellular level, the overexpression of
the miR-212/132 cluster led to a decreased apoptosis rate by
directly enhancing its downstream target Fitm2, which is localized
in the endoplasmic reticulum and is involved in lipid droplet
accumulation [42]. Moreover, miR-21, miR-34a-5p, miR-130a, and
miR-208a were also shown to be involved in the regulation of
DOX-induced cardiomyocyte apoptosis, but no specific mechan-
isms were investigated (Table 1) [43–46]. Additionally, the
downregulation of let-7g upon DOX treatment had an effect on
DOX-induced cardiac injury [47].
In addition to the majority of studies being focused on

cardiomyocyte apoptosis, Yin and colleagues investigated DOX-
induced cardiotoxicity in endothelial cells and its impact on vascular
homeostasis. MiR-320a was first reported to contribute to ather-
ogenesis and was markedly increased in human umbilical vein
endothelial cells (HUVECs) than it was in H9c2 cells upon DOX
stimulation [48]. DOX increased the apoptosis rate and hampered
the proliferation of HUVECs and impaired endothelial cell function.

The inhibition of miR-320a attenuated DOX-induced endothelial cell
damage and enhanced microvessel density by targeting vascular
endothelial growth factor (VEGF)-A, an important factor in vascular
homeostasis, especially in regulating new vessel formation [48].
Endothelial cells promote cardiomyocyte survival via the paracrine
secretion of vascular bioactive molecules [49]. For instance, a
decrease in endothelial cell-derived nitric oxide (NO) was observed
in DOX-treated HUVECs and mouse hearts, and restoration of cardiac
NO levels preserved cardiac function in doxorubicin-treated mice
[48, 50]. Moreover, endothelial cells act as a barrier to prevent the
exposure of cardiomyocytes to harmful substances; however, the
damage of DOX to the endothelium affects tight junctions, resulting
in an increase in microvascular permeability, and in vivo studies
have shown that increased permeability significantly decreases
contractility and cardiac function [51, 52]. Hence, microvascular
injury may be a preceding and contributory event to DOX-induced
cardiotoxicity. In addition, miR-320a suppression also improved
cardiac function, suggesting that DOX-induced upregulation of miR-
320a may be the cause of cardiotoxicity.

LNCRNAS AND DOX-INDUCED CARDIOTOXICITY
Introduction to lncRNAs
Long ncRNAs (lncRNAs) differ from miRNAs in that they are
composed of more than 200 nucleotides, have mRNA-like
structures, with some having poly-A tails [53]. LncRNAs can exert
their biological functions through epigenetic modification, tran-
scriptional regulation, and posttranscriptional regulation, and they
can modulate the localization and function of proteins [54, 55].
Moreover, lncRNAs also serve as “miRNA sponges/decoys” and
interact with miRNAs as competitive endogenous RNAs (ceRNAs)
[56]. Recently, an increasing number of studies have focused on
lncRNA regulation in cardiac development and remodeling
[57, 58]. Additionally, lncRNA roles in DOX-induced cardiotoxicity
have gained attention (Fig. 1) (Table 1).

LncRNAs in regulating DOX-induced cardiotoxicity
Similar to those of miRNAs, the mechanisms of lncRNAs in
regulating DOX-induced cardiotoxicity are also involved in mito-
chondrial dysfunction and ROS generation. LincRNA-p21 plays a
regulatory role in DOX-induced cardiomyopathy, and suppressing
lincRNA-p21 attenuates the DOX-induced loss of mitochondrial
membrane potential, oxidative stress and cardiomyocyte senes-
cence by negatively modulating the β-catenin pathway, which has
been shown to play an important role in age-related heart
conditions [59].
Apoptosis remains the main focus of lncRNA- and DOX-induced

cardiotoxicity. LncRNA LINC00339 was upregulated in response to
DOX treatment and enhanced DOX-induced apoptosis by
competitively sponging heart-enriched miR-484, which has been
shown to inhibit mitochondrial fission and apoptosis [60]. LncRNA
cardiac hypertrophy-related factor (CHRF), known to be involved
in regulating cardiac hypertrophy, was also elevated upon DOX
treatment. The inhibition of lncRNA CHRF ameliorated DOX-
induced cardiomyocyte apoptosis via the TGF-β/Smads and TGF-
β/p38 pathways [61]. The lncRNA Mhrt level was decreased upon
DOX treatment, a finding that was also observed in other heart
conditions. The overexpression of Mhrt facilitated the binding of
H3 histone to the Nrf2 promoter, thereby positively regulating
Nrf2 expression and consequently abrogating DOX-induced
cardiomyocyte apoptosis [62]. In addition, lncRNA FOXC2-AS1
and WNT1-inducible signaling pathway protein-1 (WISP1) levels
were both decreased and positively correlated in DOX-induced
cardiotoxicity [63]. The overexpression of FOXC2-AS1 promoted
cardiomyocyte viability by increasing WISP1 upon DOX treatment.
However, the study did not further explore whether there are
intermediators involved during the FOXC2-AS1- and WISP1-
mediated regulation of DOX cardiotoxicity [63].
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CIRCRNAS AND DOX-INDUCED CARDIOTOXICITY
Introduction to circRNAs
Circular RNAs (CircRNAs) have a specific structure with exons and/
or introns back-splicing formed loops, without 5’ end caps or 3’
end poly-A tails, they are mostly present in the cytoplasm and
derived from exons [64]. Some circRNAs can be translated into
proteins, but the majority are noncoding RNAs [65]. In addition to
interacting with various proteins, similar to other ncRNAs, circRNAs
play regulatory roles similar to ceRNAs, thereby abolishing the
effect of miRNAs on their target genes [66, 67]. Although studies
on circRNAs are still in the early phase, the results of some studies
have suggested that circRNAs are closely related to cardiovascular
development and disease, and they drawing attention because
their extensive expression and sustained stability are highly
suitable for use as biomarkers [66, 68, 69].

CircRNAs regulating DOX-induced cardiotoxicity
Qki5, an RNA-binding protein (RBP), is the most abundant Quaking
family member in the heart, and it has been reported to regulate
the formation of numerous circRNAs during the epithelial to
mesenchymal transition and to suppress cardiomyocyte apoptosis
in an ischemia-reperfusion model [70, 71]. DOX-induced down-
regulation of Qki5 suppressed circRNAs derived from Ttn, Fhod3
and Strn3 in mouse cardiomyocytes, which increased the DOX-
induced apoptosis rate and extent of cell atrophy [68] (Fig. 1). On
the other hand, simultaneous lentiviral-mediated Qki5 over-
expression and knockdown of Ttn 105-111 did not reverse DOX-
induced caspase activation. These findings indicate that Qki5-
derived circRNAs may be downstream protective mediators in
Qki5-regulated DOX cardiotoxicity. Further in vivo studies revealed
that the nuclear localization and moderate overexpression of Qki5
may be a requirement for its protective role in DOX-induced
cardiotoxicity in mice (Table 1) [68].

NCRNAS ARE PROMISING DIAGNOSTIC BIOMARKERS AND
THERAPEUTIC TARGETS
MiRNAs as diagnostic biomarkers
The current diagnostic methods for DOX-induced cardiotoxicity
are mainly based on echocardiography, which can only detect
heart dysfunction or tissue damage after it has occurred.
Circulating biomarkers such as troponin I, atrial-type and brain-
type natriuretic peptides (ANP and BNP) are also used to detect
early signs of cardiac abnormalities [72, 73]. However, these
diagnostic methods are neither specific nor sufficiently sensitive to
diagnose preclinical DOX-related cardiomyopathy [72]. The more

precise diagnostic method, endomyocardial biopsy, is invasive
and costly and thus rarely used [74]. MiRNAs are drawing great
attention as biomarkers of cardiac diseases, especially for early
detection and for the possible prediction of DOX-induced
myocardial injuries (Table 2). The initial studies on miRNAs as
DOX-induced cardiotoxicity biomarkers were based on tissue
miRNAs. A study conducted on different cumulative doses in DOX-
treated mice showed that cardiac miR-34a was upregulated with
cumulative doses of 6 mg/kg, and its expression level was
positively related to DOX dose. This elevation of miR-34a occurred
earlier than that of cardiac troponin T (cTnT), which was
upregulated at a cumulative dose of 18 mg/kg [75]. In addition,
miR-150 was markedly decreased at a dose of 12 mg/kg and was
decreased further at higher doses, which might suggest sensitivity
to DOX cardiotoxicity [75]. These findings provide guidance for
developing miRNAs as biomarkers to detect DOX-induced
cardiotoxicity prior to tissue damage. However, human tissue
testing requires invasive procedures that make it impractical to
use in clinical settings.
Subsequently, researchers have shifted their focus to circulating

miRNAs, as several advantages make microRNAs suitable biomar-
kers: high stability, presence in almost all body fluids (blood, urine,
saliva, serum, etc.), tissue-specific expression, and advanced
measuring techniques [76, 77]. In the extracellular space and
body fluids, miRNAs are resistant to degradation because they are
formed and transported in complexes with protein Argonaute 2
(AGO2) or high density lipoproteins (HDLs) [78, 79]. On the other
hand, circulating miRNAs are packed into extracellular vesicles
(EVs), predominantly exosomes [80]. These major extracellular
carriers make miRNAs highly stable and readily detected in blood
samples. In a rat model, the elevated serum miRNA level post-
acute myocardial infarction (AMI) was downregulated in heart
tissue, indicating that miRNAs were released into the bloodstream
during cardiac injury [81]. In view of the variety of myocardial cells
that may be affected during heart injury, a recent study revealed
that the expression of plasma miRNAs is not cell-specific, but
cardiomyocytes remain the main source of cells during the
response to injury and stress [82]. Hence, plasma miRNAs as
biomarkers for DOX-induced cardiotoxicity may be a promising
research area.
Circulating miR-133a (heart- and skeletal muscle-specific) is

increased earlier than cTnT in myocardial infarction patients [83].
In DOX-treated rats, both plasma miR-133a and miR-133b were
also upregulated 24 h after a single dose was administered, which
makes them possible biomarkers for DOX-induced cardiomyo-
pathy [84]. However, this increase was possibly due to skeletal

Table 2. MiRNAs as potential biomarkers and their clinical significance.

MiRNA Heart tissue Circulating blood Clinical significance

miR-34a-5p Upregulated in mice Not tested ✧ Superior to cTnT
✧ Positively related to DOX dose

miR-150-5p Downregulated in mice Not tested

miR-133a-3p/miR-133b-3p Not tested Upregulated in mice & patients ✧ Possible due to skeletal muscle injury
✧ No difference between cardiotoxic and

non-cardiotoxic patients

miR-1-3p Not tested Upregulated in patients downregulated
in mice

✧ Superior to cTnI
✧ Correlated with LVEF changes

miR-29b-3p Downregulated in mice Upregulated in patients ✧ Higher in patients with acute elevated cTnT

miR-29c-3p Not tested Upregulated in patients ✧ Initiation of anthracycline

miR-499-5p Downregulated in mice Upregulated in patients downregulated
in mice

✧ Higher in patients with acute elevated cTnT
✧ Positively correlated to decline in LVEF from

initiation to completion of anthracycline

miR-208a-3p Downregulated in mice No changes in patients

miR-208b-3p Upregulated in mice No changes in patients

Non-coding RNAs in doxorubicin-induced cardiotoxicity
HG Fa et al.

503

Acta Pharmacologica Sinica (2021) 42:499 – 507



muscle injury, as indicated by heart-specific miR-208 levels
remaining unchanged under the same conditions [85]. In 2016,
56 female breast cancer patients were enrolled in a clinical
study, and the results demonstrated an increase in circulating
miR-133b, but no obvious differences were observed for
patients with induced cardiotoxicity and those without induced
cardiotoxicity, which suggests that miR-133 is not a sensitive
diagnostic marker [86].
Circulating miR-1 levels consistently increase in DOX-treated

breast cancer patients with induced cardiotoxicity beginning
during the second cycle of chemotherapy. In addition, this
upregulation correlated with left ventricular ejection fraction
(LVEF) changes, and the receiver operating characteristic (ROC)
curve revealed that circulating miR-1 was more reliable than
cardiac troponin I (cTnI) in identifying cardiotoxicity in terms of its
sensitivity and specificity [86]. With results consistent to these
outcomes, Leger et al. demonstrated that plasma miR-1 levels
were elevated as early as 6 h post-anthracycline administration in
children and young adult patients [87]. These findings make miR-1
a potential sensitive biomarker in the detection of DOX-induced
cardiotoxicity. However, a recent study was conducted on mice
treated with intraperitoneal injections of DOX (4mg/kg) 3 times
per week for 2 weeks (a total of 24 mg/kg) to screen differentially
expressed circulating miRNAs in DOX-induced cardiac impaired
mice with respect to those in mice unaffected by DOX.
Surprisingly, the plasma miR-1-3p level was significantly decreased
in the DOX-treated mice with measurable heart impairment [73].
Hence, more studies should consider these contradictory results to
develop precise biomarkers.
In children and young adult patients receiving anthracyclines,

plasma miR-29b and miR-499 are both increased. Moreover,
patients with acute cardiac injury had higher plasma miR-29b and
miR-499 levels compared with those with chronically elevated or
normal cTnT levels, which suggests that the increases in miR-29b
and miR-499 may be indicators of anthracycline-induced acute
cardiac injury [87]. However, this study did not provide an
assessment of LVEF. Another study conducted on pediatric
patients receiving anthracycline chemotherapy revealed that
serum miR-29c-3p and miR-499a-5p were upregulated during
the initiation and completion of an anthracycline course,
respectively. Additionally, the change in miR-499a-5p levels from
initiation to completion of the anthracycline regimen was
positively correlated with a decline in LVEF [88]. These findings
may suggest that miR-499a-5p can serve as a biomarker of LVEF
decline in pediatric patients receiving anthracycline. Interestingly,
in mice treated with a total DOX dose of 24mg/kg, similar to miR-
1, the plasma miR-499-5p level was found to be decreased in DOX-
induced cardiac impaired mice [73]. Additionally, as described
above in this review, both miR-29b and miR-499-5p expression in
cardiac tissue is downregulated in DOX-treated mouse models
[25, 27].
MiR-208a and miR-208b show different expression trends in

DOX-treated mice that are similar to those of the host transcripts
(Myh6 and Myh7, respectively) [89]. However, neither miR-208a
nor miR-208b was detectable in an experiment with breast cancer
patients receiving DOX treatment [86]. Taken together, these data
suggest that the potential for using miRNAs as biomarkers showed
contrasting results in different studies, especially between species.
The precise reasons for the differential expression of these
circulating miRNAs are unclear. Species heterogeneity, animal
model representativeness, and patients’ basic medical condition
may partially explain the discrepancies. Whether different signals
are triggered following a few doses of DOX over 2 weeks in a
mouse model versus cumulative doses over months in patients
requires further study. It is also uncertain whether the time frames
evaluated in most animal studies are comparable to those
evaluated in clinical studies. Hence, there is a clear need for
increased consistency in the research model used. Moreover,

miRNA (e.g., miR-133b mentioned previously) perturbation was
also observed during DOX-induced cardiac impairment and
nonimpairment, suggesting that miRNA regulatory roles in
different phases of DOX cardiotoxicity still need to be explored.
Additionally, whether patients’ other medical conditions interfere
with the mechanisms of DOX cardiotoxicity, resulting in inaccurate
findings, also needs further investigation. Patients’ preexisting
medical conditions may contribute to the alteration of miRNA
expression. For example, serum miR-29a is significantly upregu-
lated in type 2 diabetes mellitus; miR-29b positively correlates
with nonalcoholic fatty liver disease in a Chinese population; miR-
29a, miR-29b, and miR-29c show higher expression levels in
hypertensive patients compared with healthy control individuals
[90–92]. In these cases, an elevation of miR-29 may not reflect the
effectiveness of DOX in the patients receiving DOX treatment. All
these findings affect the validity and reliability of the studies on
miRNAs as biomarkers.
In addition, the current definition of cancer treatment-associated

cardiovascular toxicity is characterized by LVEF reduction of more
than 10% and less than 50% based on echocardiography, while
changes in plasma troponins can be used only as adjunctive
measurements to identify patients at risk for long-term cardiotoxi-
city [93]. Thus, studies comparing the sensitivity of miRNAs to
troponins can address only the early detection of subclinical cardiac
diseases. Further studies should focus more on the clinical
relevance of using miRNAs as biomarkers and the extent of LVEF
decline. Notably, studies have revealed that chronic progressive
cardiac dysfunction is still observed in pediatric patient survivors
years after anthracycline treatment, and in the one year after
anthracycline treatment, 17% of pediatric patients still showed
declined LVEF [94, 95]. Thus, exploring the specific and sensitive
biomarkers for DOX-induced myocardial injury in this population
needs more attention.

MiRNAs as therapeutic targets
Although some plasma miRNAs are not consistently expressed,
others are stable and are considered therapeutic targets for DOX-
induced cardiotoxicity because they have normalized dysregu-
lated miRNAs in mouse models. MiRNA agomirs and antagomirs
have been used in animal studies to achieve short-term gain- or
loss-of-function [96]. The antagomir was injected into the
experimental mice to therapeutically silence miR-208a, which
resulted in cardiac function improvements following DOX treat-
ment [43]. Rats that were pretreated with miR-29b agomir
displayed improved cardiac functions and lower mortality post-
DOX treatment [27]. Treatment with miR-140-5p antagomir prior
to DOX treatment markedly alleviated the abnormal histopathol-
ogy of the myocardium and aberrant ECG induced by DOX [10].
Regarding the study of delivering miRNA to humans, miravirsen is
a leading nucleic acid-modified DNA phosphorothioate antisense
oligonucleotide that inhibits miR-122 for the treatment of
hepatitis C that has completed a multicenter phase 2a trial [97].
However, there are restrictions to using antisense oligonucleo-
tides. For example, the targeted miRNAs must be exquisitely
designed for tissue specificity, as ubiquitously expressed miRNAs
can be internalized by several organs (mainly the liver and kidney)
upon systemic administration; however, studies insufficiently
measure the effects on nontargeted tissues, ignoring off-target
effects [97, 98]. In addition, high doses of synthetic oligonucleo-
tides are required for systemic administration, which may elicit an
immune response that could compromise safety [99].
Adeno-associated virus (AAV) vectors enhanced miR-499-5p

expression in mouse hearts and attenuated DOX cardiotoxicity
[25]. AAV-mediated miR-212/132 administration improved cardiac
function and prevented cardiac apoptosis and atrophy in a DOX-
induced cardiotoxic mouse model [42]. A combination of AAV
vectors with miRNA decoys (tough decoys) achieved long-term miR-
320a inhibition in mice and attenuated cardiac dysfunction [48].
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However, AAV can be possibly transduced in other organs, and
prolonged expression of miRNAs may last a lifetime, which may
cause harm [100]. These concerns about AAVs limit their
applications. A new method for delivering miRNA mimics through
direct intracardiac injection was proposed for use in myocardial
infarcted mice, and this transient miRNA delivery was sufficient to
drive a significant cardiomyocyte regenerative response [100].
Recently, CRISPR/Cas9 technology was used to edit miRNAs and
was shown to be efficient and stable in the control of cross-
organelle off-target effects [101]. New delivery methods are
emerging, including negatively charged calcium phosphate
nanoparticles, localized injection of miRNA-enriched extracellular
vesicles, and ultrasound-based and microbubble-targeted delivery
[102–104]. Overall, miRNA-based therapeutics for cardiovascular
disorders are still in the preclinical phase. Hopefully, exploring
tissue/cell-specific delivery techniques will provide more efficient
and harmless methods for use in miRNA therapeutic interventions.

FUTURE PERSPECTIVES AND CONCLUSIONS
Cancer therapies have continuously improved malignant patient
outcomes and prognosis. However, DOX-induced irreversible
cardiomyopathy is still a main concern and obstacle for clinical
applications, which have gained increasing awareness. Despite
years of investigations, the exact mechanisms of DOX-induced
cytotoxicity are not fully elucidated. Moreover, advances in
treatments have increased the number of survivors with late-
occurring, treatment-related cardiovascular complications, espe-
cially children or young patients, making it extremely difficult to
detect and prevent. However, the majority of the current in vitro
studies provide only short-term stimuli and investigate these
acute changes, which might involve different mechanisms and
signaling pathways than are involved in people who received DOX
years ago. In addition, whether cardiomyocytes can represent all
patient age groups is an issue to be considered. These issues may
be the reasons that several potential biomarker miRNAs show
different expression trends in mice and humans. In addition,
in vivo studies lack definitive methods for detecting the early signs
of cardiomyopathy in addition to the formation of tissue damage.
Another concern is that the tumor itself may cause diverse
expression of ncRNAs involved in the regulation of DOX
cardiotoxicity. For instance, a study to identify the circulating
miRNA signatures in breast cancer patients (without indicating
their treatment status) showed that miR-1, miR-92a, miR-133a and
miR-133b were upregulated in patient serum [105]. However, miR-
1 and miR-133b showed the same trend in study of breast cancer
patients who received DOX treatment introduced above. There-
fore, although plasma miRNAs are easily accessible, measurable
and possibly sensitive, thus showing great potential as diagnostic
biomarkers, more specific studies are needed in the future. The
protection of the heart without reducing the effect of DOX on
tumors while exploring the use of ncRNAs as therapeutic targets is
another problem to be solved. In addition, other anticancer agents
have also been reported to cause cardiac events and dysregula-
tion of ncRNAs, especially emerging targeted therapies and
immune checkpoint inhibitors [106–109]. However, research in
this field is still in its infancy, and further research is needed to
distinguish the dysregulated ncRNAs caused by specific drugs.
Finally, effective methods for therapeutically manipulating dysre-
gulated miRNAs to reverse or prevent DOX-induced cardiotoxicity
need to be explored.
Among the three types of ncRNAs, miRNAs are the most

extensively studied, while the understanding the roles of lncRNAs
and circRNAs in DOX-induced cardiotoxicity is still at an initial
stage. However, mounting evidence suggests that both lncRNAs
and circRNAs are associated with many cardiovascular diseases,
such as the lncRNA HOX transcript antisense RNA (HOTAIR) and
the circRNA transcribed from the sodium/calcium exchanger 1

(ncx1) gene (circNCX1), both of which play regulatory roles in
myocardial infarction [110, 111], and the lncRNA taurine
upregulated gene 1 (TUG1) and the heart-related circRNA (HRCR),
which participate in the regulation of cardiac hypertrophy
[69, 112]. Hence, the above mentioned ncRNAs possibly play
functional roles in DOX cardiotoxicity, which requires further
study. Increasing research suggests that lncRNAs and circRNAs are
promising diagnostic/therapeutic targets because they are mostly
tissue-specific and stably expressed. The LncRNA cardiac
hypertrophy-associated transcript (CHAST), myocardial infarction-
associated circular RNA (MICRA) and hsa_circ_0124644 have also
been tested for their potential roles as biomarkers for cardiovas-
cular conditions [113–115]. These studies indicated that certain
lncRNAs and circRNAs can be employed as biomarkers for heart
diseases. Nevertheless, to determine whether they show the
identical indications or can be identified as diagnostic tools in
DOX-induced cardiotoxicity, further investigation is needed. In
summary, future studies on ncRNAs in early-stage detection and
preservation of cardiac structure and function upon DOX
treatment while maintaining their roles in tumor cells will broaden
the prospects for the clinical utilization of DOX.
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