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Autophagy-dependent removal of α-synuclein: a novel
mechanism of GM1 ganglioside neuroprotection against
Parkinson’s disease
Yu-Lin Guo1,2, Wen-Jun Duan1,2, Dan-Hua Lu1,2, Xiao-Hui Ma1,2, Xiao-Xiao Li1,2, Zhao Li1,2, Wei Bi3, Hiroshi Kurihara1,2, Hai-Zhi Liu3,
Yi-Fang Li1,2 and Rong-Rong He1,2,4

GM1 ganglioside is particularly abundant in the mammalian central nervous system and has shown beneficial effects on
neurodegenerative diseases. In this study, we investigated the therapeutic effect of GM1 ganglioside in experimental models of
Parkinson’s disease (PD) in vivo and in vitro. Mice were injected with MPTP (30 mg·kg-1·d−1, i.p.) for 5 days, resulting in a subacute
model of PD. PD mice were treated with GM1 ganglioside (25, 50 mg·kg−1·d−1, i.p.) for 2 weeks. We showed that GM1 ganglioside
administration substantially improved the MPTP-induced behavioral disturbance and increased the levels of dopamine and
its metabolites in the striatal tissues. In the MPP+-treated SH-SY5Y cells and α-synuclein (α-Syn) A53T-overexpressing PC12
(PC12α-Syn A53T) cells, treatment with GM1 ganglioside (40 μM) significantly decreased α-Syn accumulation and alleviated
mitochondrial dysfunction and oxidative stress. We further revealed that treatment with GM1 ganglioside promoted autophagy,
evidenced by the autophagosomes that appeared in the substantia nigra of PD mice as well as the changes of autophagy-related
proteins (LC3-II and p62) in the MPP+-treated SH-SY5Y cells. Cotreatment with the autophagy inhibitor 3-MA or bafilomycin A1
abrogated the in vivo and in vitro neuroprotective effects of GM1 ganglioside. Using GM1 ganglioside labeled with FITC fluorescent,
we observed apparent colocalization of GM1-FITC and α-Syn as well as GM1-FITC and LC3 in PC12α-Syn A53T cells. GM1 ganglioside
significantly increased the phosphorylation of autophagy regulatory proteins ATG13 and ULK1 in doxycycline-treated PC12α-Syn A53T

cells and the MPP+-treated SH-SY5Y cells, which was inhibited by 3-MA. Taken together, this study demonstrates that the anti-PD
role of GM1 ganglioside resulted from activation of autophagy-dependent α-Syn clearance.
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INTRODUCTION
Parkinson’s disease (PD), one of the most widespread neurode-
generative diseases, affects 2%–3% of the population aged 65 and
older [1]. Generally, PD is characterized by selective loss of
dopaminergic neurons in the substantia nigra of the midbrain [2].
Researchers have reported multiple molecular mechanisms under-
lying PD, such as mitochondrial dysfunction, oxidative stress,
axonal transport, Ca2+ homeostasis, and neuroinflammation [1]. In
particular, α-synuclein (α-Syn), the intracellular components of
Lewy bodies, is considered to be one of the most important
neuropathological hallmarks of PD [3]. The accumulation of α-Syn
has been observed in the dopaminergic neurons of PD patients [4],
MPTP-treated animals [5], and MPP+-treated neuroblastoma cells
[6]. In addition, α-Syn mutations (A30P, A53T, and E46K) have been
reported to be the main cause of rare familial PD [3, 7–9].
Accordingly, clearance of α-Syn provides a reasonable therapeutic
approach for PD. Autophagy is thought to play a vital role in

degrading intracellular α-Syn aggregates [10–13]. Rapamycin has
been shown to decrease α-Syn aggregation by inducing autop-
hagy, thereby protecting against dopaminergic neuron death
in vitro and in vivo [14]. Unfortunately, the lack of specificity of
rapamycin often results in several side effects, such as oral and
respiratory infections, leukopenia, stomatitis, hypercholesterolemia,
hypertriglyceridemia, and immunosuppression, and thus limits its
application for PD therapy [15]. Hence, there is currently an urgent
need to find other candidate PD treatments that can clear α-Syn
aggregates but have fewer side effects.
GM1 ganglioside (18:1/18:0) is one of the predominant brain

gangliosides, glycosphingolipids composed of three structural
units: an oligosaccharide, a ceramide anchor, and several sialic
acid residues [16]. This molecule has been viewed as an essential
modulator in various brain functions due to its regulation of
neuronal plasticity, the release of neurotrophins, neurotransmis-
sion, and interactions with neuroregulatory proteins [17, 18]. In
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addition, exogenous ganglioside has been shown to affect
the survival of dopaminergic [19, 20], glutamatergic [21],
and cholinergic neurons [22] in the central nervous system.
The therapeutic effect of GM1 ganglioside has been shown in
PD patients, as well as in MPTP-treated mice and primates
[19, 20, 23–26], demonstrating neuroprotective or neurorestora-
tive effects [27–29]. Despite these positive data, the precise
mechanism of GM1 ganglioside for treatment of PD is still
uncertain. This treatment was suggested to degrade α-Syn in an
autophagy-dependent manner in previous reports [30–32], which
prompted us to investigate whether autophagy was involved in
the anti-PD mechanism of GM1 ganglioside. To prove this
hypothesis, we established α-Syn overexpression models by
MPTP/MPP+ treatment to evaluate the effects of GM1 both
in vivo and in vitro. In addition, we employed PC12α-Syn A53T cells
expressing inducible α-Syn to demonstrate a direct relationship
between GM1 and α-Syn. Our research elucidates a novel
mechanism underlying the protective effect of GM1 ganglioside
against PD, which provides vital evidence for its clinical usage.

MATERIALS AND METHODS
Reagents and antibodies
MPTP, MPP+, and 3-MA were purchased from Millipore Sigma (St.
Louis, MO, USA). GM1 ganglioside was purchased from Qilu
Corporation (Ji-nan, China). Selegiline was purchased from Orion
Corporation (Turku, Finland). Rapamycin was purchased from
Selleck (Houston, TX, USA). Pierce bicinchoninic acid (BCA) protein
assay kits were obtained from Thermo Scientific (Rockford, IL,
USA). DNA transfection reagent was purchased from Neofect
Biotechnology Corporation (Beijing, China). The antibodies used in
all experiments were as follows: α-Syn (1:1000, Santa Cruz, Dallas,
TX, USA), β-actin (1:3000, Santa Cruz), ULK1 (1:1000, CST, Danvers,
MA, USA), p-ULK1Ser555 (1:1000, CST), ATG13 (1:1000, CST),
ATG13Ser355 (1:1000, CST), LC3 (1:1000, CST), SQSTM1/p62
(1:1000, Abcam, Cambridge, UK), and GAPDH (1:3000, Fude
Biotechnology, Hangzhou, China). Horseradish peroxidase-
conjugated secondary antibodies included HRP AffiniPure Goat
Anti-Mouse IgG (H+ L) (1:5000, Fude Biotechnology) and HRP
AffiniPure Goat Anti-Rabbit IgG (H+ L) (1:5000, Fude Biotechnol-
ogy). The secondary antibodies were conjugated with Alexa Fluor
488 goat antirabbit IgG, Alexa Fluor 555 goat antirabbit IgG or
Alexa Fluor 555 goat anti-mouse IgG (1:300, Life Technologies,
Grand Island, NY, USA). Nuclear dyes included DAPI (1:800,
Beyotime, Shanghai, China) and Hoechst 33258 (Beyotime).

Animals and treatment
The inbred strain of male C57BL/6 J mice at 8–9 weeks old and
weighing 20–25 g was purchased from Guangdong Experimental
Animal Center in the study. The animals were given free access to
food and water. The animal room temperature was 23 ± 2 °C
under a 12-h light/12-h dark cycle. All animal experiments were
approved by the Animal Ethics Committee of Jinan University
(approval number: 20130904001).
Experimental procedures (Supplementary Fig. S1a) were con-

ducted as follows. Eight-week-old male C57BL/6 J mice were
randomly divided into 7 groups: control, GM1-H, MPTP, MPTP+
GM1-L, MPTP+ GM1-H, MPTP+ 3-MA+ GM1, and MPTP+ selegi-
line (Sele) (n= 15 each group). Except for the control and GM1-
high-dose groups, the other groups were injected daily with MPTP
(30mg/kg) intraperitoneally for five days, resulting in a subacute
model of PD. Then, the control group and the MPTP group were
given an equal volume of saline daily, and the other mice were
injected intraperitoneally daily with 25 mg/kg or 50 mg/kg GM1
ganglioside. Then, 15 mg/kg 3-MA and 60mg/kg selegiline were
given daily by intragastric gavage for two consecutive weeks. The
intraperitoneal injection of 3-MA was given 30min before GM1
ganglioside administration.

Rotarod test
Rotarod performance was used to assess the motor balance and
coordination of the mice. Motor function was evaluated as
described previously [33]. Mice were trained for 3 days prior to
treatment to adapt to the rotarod apparatus (Zhenghua Co.,
Huaibei, China). After training, on the 7th day, the mice were
placed in a separate runway on the rod, with a constant speed of
25 rpm every day at the same time. Each mouse was tested at
least 3 times. The latency to fall was recorded.

Pole test
The pole test was used to evaluate the mouse movement disorder.
The instrument consists of an iron stand (height, 60 cm; diameter,
0.8 cm) with a small ball wrapped with gauze at the top. In the
test, the mice were placed on the top of a small ball, and the time
required for the mouse to climb down the pole was recorded.
The test was performed 3 times per mouse, and the maximum
time was recorded.

Gait analysis
Catwalk is a system for rodent gait analysis. The apparatus consists
of a long glass walking plate, a fluorescent light beamed into the
glass plate and a high-speed video camera under the glass plate.
In a dark environment, the light was reflected downward, and a
camera mounted under the glass recorded the footprint of the
mouse on the walkway [34]. Mice were trained to cross the glass
walkway 3 days prior to the test. After the last drug administration,
the mice underwent unforced and uninterrupted movement at
least 3 times. The mouse gait data were qualitatively and
quantitatively analyzed by the automated gait analysis system
Catwalk (Noldus Information Technology, Wageningen, the
Netherlands).

Dopamine, DOPAC, and HVA measurements
The levels of dopamine and its metabolites (DOPAC and HVA) in
the striatum were detected as previously described [35]. In brief, 3
mice from each group were sacrificed, and the striatum was
peeled off. The weighed samples were homogenized in 0.3%
perchloric acid and then centrifuged at 13,400 × g for 10 min at
4 °C. The supernatants were filtered through a 0.22 µm filter
membrane. The mobile phase consisted of 20.2 g of trisodium
citrate, 0.036 g of disodium ethylenediamine tetraacetate, 13.64 g
of citric acid, 0.18 g of sodium octane sulfonate, 100 mL of
methanol and up to 1 L with ultrapure water. The supernatants
were used for dopamine, DOPAC, and HVA measurements
by HPLC system coupled to an electrochemical detector
(ESA Biosciences, Chelmsford, MA, USA) (E1: -150 mV and E3:+
450mV).

Cell culture
Human neuroblastoma SH-SY5Y cells were kindly provided by Key
Lab Innovat Chem Drug Res Cardioceb (Jinan University,
Guangzhou, China). PC12α-Syn A53T cells were kindly provided by
the Chinese Academy of Sciences (Shanghai, China). SH-SY5Y cells
were cultured in DMEM supplemented with 10% (v/v) FBS and
100 units/mL penicillin/streptomycin and maintained at 37 °C in
humidified 5% CO2. PC12 cell lines express inducible A53T α-Syn,
and the cells were cultured in DMEM containing 10% FBS, 5%
horse serum, and 100 units/mL penicillin/streptomycin in a 5%
CO2 atmosphere. PC12 cells were treated with 1 μg/mL doxycy-
cline in the medium for 12 h to induce cell overexpression of α-
Syn. All experiments were performed using cells at a
logarithmic phase.

MTT assay
SH-SY5Y cell viability was evaluated by MTT assays in 96-well
plates at a density of 4 × 103 cells/well. After treatment, the
medium was replaced with DMEM to which MTT (14 µL, 5 mg/mL)
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reagent was added in each well and incubated with cells at 37 °C
for another 4 h. Then, the supernatant was removed, and the cells
were lysed in 150 µL of DMSO for 10min. The absorbance of
dissolved formazan was measured in a microplate reader
(Sartorius Stedim, Goettingen, Germany) at 570 nm.

Electron microscopic analysis
Fragments from the substantia nigra pars compacta were fixed in
3% glutaraldehyde for 24 h and then postfixed in osmic acid in 1%
phosphate buffer for 2 h. Thereafter, the specimens were
dehydrated in 50% ethanol for 10min, 70% ethanol for 10 min,
90% ethanol for 10 min, 90% ethanol: 90% acetone (1:1) for
10min, 90% acetone for 10 min, and 100% acetone for 10 min and
then embedded in EPON capsules. The specimens were cut into
ultrathin sections, collected on copper grids, and stained with
sodium acetate and lead citrate. Finally, the specimens were
imaged by transmission electron microscopy (TEM) (Philips Tecnai
10, Amsterdam, the Netherlands) for ultrastructure analysis.

Mitochondrial membrane potential (MMP, ΔΨm) measurement
SH-SY5Y cells were cultured in six-well plates and treated with the
indicated agents. Then, the level of MMP was measured by
5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide
(JC-1) staining. Green fluorescence was detected in the FL1
channel by a flow cytometer equipped with Expo32 ADC
(Beckman Coulter, Brea, CA, USA).

Intracellular ROS measurement
The level of intracellular ROS production was measured using a
DCFH-DA fluorescence probe. SH-SY5Y cells were cultured in 6-
well plates and treated with the indicated drugs. In addition, the
cells were incubated with DCFH-DA at 37 °C for 30 min, and DCFH-
DA fluorescence intensities were evaluated by fluorescence
microscopy with a plate reader at an excitation wavelength of
485 nm and an emission wavelength of 538 nm.

Western blot analysis
The collected cells were homogenized with cell lysis buffer for
Western blot and immunoprecipitation (IP) (Beyotime) at 4 °C
for 30 min. Cell lysates were centrifuged at 13,400 × g for 15 min at
4 °C, and the supernatant was collected. Then, the protein
concentration was measured with a BCA Protein Assay Kit. Equal
amounts of protein were separated by 10%–15% SDS-PAGE and
transferred to PVDF membranes (Millipore Corporation, Billerica,
MA, USA). The membranes were blocked with 5% nonfat milk in
Tris-buffered saline with Tween-20 (TBST) at room temperature for
1 h and then incubated with the indicated primary antibody
dilutions in TBST overnight at 4 °C. Then, the membranes were
washed with TBST and incubated with HRP-conjugated secondary
antibodies for 2 h at room temperature. The membranes were
visualized using ECL reagent. Immunoreactivity for each protein
band intensity was quantified by NIH ImageJ software and
normalized to β-actin as a loading control.

Autophagy flux assay
SH-SY5Y cells were transiently transfected with autophagy LC3
double-labeling (mRFP-GFP-LC3) adenovirus (purchased from
Hanbio Biotechnology Co., Ltd., Shanghai, China) using Neofect™
DNA transfection reagent according to the manufacturer’s
protocol. After transfection, the cells were fixed with 4%
paraformaldehyde (PFA), and the nuclei were stained with DAPI.
Then, the mRFP- and GFP-LC3 puncta in the SH-SY5Y cells were
observed using an LSM 700 confocal microscope (Carl Zeiss Corp.,
Oberkochen, Germany).

Immunofluorescence analysis
Immunofluorescence staining of SH-SY5Y or PC12α-Syn A53T cells
grown in confocal dishes was conducted. The cultured cells were

rinsed with PBS and fixed with 4% PFA for 10 min, permeabilized
with 0.2% Triton-X 100 for 10min, blocked with 3% bovine serum
albumin for 45 min, and then incubated with primary antibodies
against α-Syn and LC3 followed by secondary antibodies
conjugated with Alexa Fluor 555 goat anti-mouse or goat
antirabbit IgG or 488 goat antirabbit IgG for 2 h at room
temperature. Nuclei were stained with DAPI or Hoechst 33258,
and the treated cells were visualized and analyzed using confocal
microscopy.

Synthesis steps of GM1-FITC
The chemical process to label GM1 ganglioside with fluorescent
FITC was as follows: fluorescent FITC was dissolved in 500 μL of
DMSO at a concentration of 10 μg/mL, and then, the FITC solution
was mixed with 500 μL of acetic acid, 500 μL of ethanol and 500 μL
of ultrapure water to form a reaction system. GM1 ganglioside was
added to the above reaction system for 12 h, and the pH of the
solution was adjusted to 7.4.

Statistical analysis
All experiments were independently performed at least three
times. Data are expressed as the mean ± SEM. Data were
statistically analyzed by IBM SPSS Statistics 25.0 (SPSS, Inc.,
Chicago, IL, USA). Statistical significance was determined using
independent-samples t-test and one-way ANOVA with Bonferro-
ni’s multiple comparisons test or Dunnett’s or LSD post hoc
analysis. A value of P < 0.05 was defined as statistically significant.

RESULTS
GM1 ganglioside improves MPTP-induced behavioral deficits and
rescues the levels of dopamine and its metabolites in C57BL/6 J
mice
MPTP is converted to the toxic metabolite MPP+ by the enzyme
MAO-B and kills dopaminergic neurons by inhibiting complex I of
the mitochondrial electron transport chain [36]. Thus, MPTP and
MPP+ are often used to induce a syndrome of neuronal
cytotoxicity closely resembling PD in vivo or in vitro, respectively
[37, 38]. In this study, C57BL/6 J mice were intraperitoneally
injected with MPTP (30mg/kg) for 5 days to establish a PD model
(Supplementary Fig. S1a) to assess the protective effect of GM1
ganglioside (structure shown in Supplementary Fig. S1b). After
2 weeks of treatments, we performed behavioral tests, including
the pole test, the rotarod test, and gait analysis by Catwalk. As
shown in Fig. 1a, the MPTP-treated mice spent more time climbing
the pole than the control mice (P < 0.01). In contrast, the
administration of GM1 ganglioside (i.p., 25 and 50mg/kg) and
selegiline (an MAO-B inhibitor, i.g., 60 mg/kg) significantly reduced
the time the MPTP-treated mice spent climbing the pole. In the
rotarod test, MPTP treatment significantly reduced the latency to
fall (Fig. 1b, P < 0.05), illustrating the motor deficits induced by
MPTP. Treatment with GM1 ganglioside (i.p., 25 and 50mg/kg)
and selegiline inhibited the decline in latency to fall induced by
MPTP (Fig. 1b).
Gait disturbances are one of the most common locomotor

dysfunctions. We further evaluated the therapeutic effect of GM1
ganglioside on the gait by Catwalk assays with parameters
including step cycle, swing speed, cadence, run duration and
walking speed. As shown in Fig. 1c–g, a significant decrease was
observed in the swing speed and cadence, while a substantial
increase was observed in the step cycle, run duration, and walking
speed in the MPTP-treated mice. By comparison, treatment with
GM1 ganglioside and selegiline effectively ameliorated the
impairment of these gait behaviors caused by MPTP (Fig. 1c–g).
Moreover, GM1 ganglioside treatment recovered the gait perfor-
mance (Fig. 1k), increased the touch and suspension times of the
limbs (Fig. 1l) and augmented the number of footfall patterns
(Fig. 1m) in the MPTP-treated mice. These three behavioral tests
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together suggested a notable therapeutic effect of GM1 ganglio-
side on PD. Notably, the protective effect of GM1 ganglioside in
the three behavior tests was drastically reversed by the admin-
istration of 3-MA (i.p., 15 mg/kg), a class III PI3K autophagy
inhibitor (Fig. 1a–g and k–m). This finding indicated that
autophagy might be associated with the protective effect of
GM1 ganglioside.

In addition, we detected the levels of dopamine and its
metabolites in the striatum of the mice by high-performance
liquid chromatography with electrochemical detection (HPLC-
ECD). As shown in Fig. 1h–j, MPTP treatment significantly reduced
the levels of dopamine, dihydroxyphenylacetic acid (DOPAC), and
homovanillic acid (HVA). Treatment with GM1 ganglioside and
selegiline prevented the MPTP-induced reductions of dopamine,
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DOPAC, and HVA levels, suggesting that GM1 ganglioside
effectively improved the function of dopaminergic neurons.

GM1 ganglioside ameliorates MPP+-induced neurotoxicity and
reduces α-Syn accumulation in neuronal cells
MPP+, the metabolite of MPTP, can lead to neurotoxicity in vitro
[39, 40]. Thus, we further employed MPP+ to confirm the
neuroprotective effect of GM1 ganglioside in SH-SY5Y cells. As
shown in Fig. 2a, GM1 ganglioside at concentrations less than 320
μM did not trigger any cytotoxicity. MPP+ (1 mM) substantially
inhibited cell proliferation, which was significantly attenuated by
treatment with different concentrations (20, 40, and 80 μM) of
GM1 ganglioside (Fig. 2b). Moreover, MPP+ led to obvious
morphological changes in cells, such as decreased pseudopodia
and elongated cell bodies, which were attenuated by GM1
ganglioside (Fig. 2c). Western blot analysis showed that treatment
with GM1 ganglioside dramatically inhibited the MPP+-induced α-
Syn accumulation in SH-SY5Y cells (Fig. 2d, P < 0.05). Consistently,
GM1 ganglioside reduced the doxycycline-induced α-Syn over-
expression in a time-dependent manner in PC12α-Syn A53T cells
(Fig. 2e).
Defective mitochondrial function and increased oxidative stress

have been demonstrated in the pathogenesis of PD [41]. As shown
in Fig. 2g and h, exposure of SH-SY5Y cells to 1 mM MPP+ for 36 h

obviously reduced the mitochondrial membrane potential (ΔΨm)
while increasing the ROS levels in SH-SY5Y cells (P < 0.001),
whereas treatment with GM1 ganglioside markedly inhibited
these changes.
In addition, the autophagy inhibitor 3-MA or bafilomycin A1

could abrogate the effect of GM1 ganglioside on the MPP+-
induced inhibition of cell viability (Fig. 2f, P < 0.05), decrease in
ΔΨm (Fig. 2g, P < 0.001) and ROS generation (Fig. 2h, P < 0.01).
Consistent with the observation in MPTP-treated mice, these
in vitro findings further implied that autophagy activation was
involved in the protective effect of GM1 ganglioside on PD.

GM1 ganglioside induces autophagy in neuronal cells
GM1 ganglioside was shown to exhibit a positive effect on
inducing autophagy in multiple cell lines [42–44]. Our data
showed that the increase in the autophagy marker LC3-II and the
degradation of the autophagy substrate SQSTM1/p62 were both
enhanced in the SH-SY5Y cells treated with different doses of
GM1 ganglioside, especially at 40 μM (Fig. 3a). In addition, at this
dose, GM1 ganglioside showed the most obvious effect on these
autophagy-related proteins when the cells were treated for 24 h
(Fig. 3b). Therefore, in the following experiments, we applied
40 μM and 24 h of GM1 ganglioside as the cell-treatment
conditions. To evaluate the GM1-mediated promotion of
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autophagy more intuitively, we conducted an autophagy flux
assay by using mRFP-GFP-LC3 labeling. SH-SY5Y cells were
treated with GM1 ganglioside with or without bafilomycin A1.
Rapamycin, functioning as an autophagy inducer by inhibiting
mTOR [45], was applied as a positive control. Since GFP is
sensitive to low pH conditions, when autophagosomes fuse with
lysosomes, GFP (green) fluorescence is quenched, and only
mRFP (red) fluorescence can be observed. When GFP and mRFP
(yellow) fluorescence appear at the same time, it suggests that
autophagosomes do not combine with lysosomes [46]. The red
puncta were significantly increased in the cells treated with GM1
ganglioside or rapamycin compared with the control cells, while
treatment with a combination of GM1 ganglioside and
bafilomycin A1 could enhance the yellow puncta (Fig. 3c),
indicating that GM1 ganglioside enhanced autophagy flux in SH-
SY5Y cells.

The activation of autophagy facilitates the clearance of α-Syn by
GM1 ganglioside
Since the removal of aberrant α-Syn offers a promising strategy for
the treatment of PD [47], earlier studies have shown that
autophagy-mediated α-Syn degradation favors the protective
effect against PD [30–32]. The protective effects of GM1 ganglio-
side on the MPTP-induced mice and the MPP+-induced cells were
blocked by 3-MA and bafilomycin A1, indicating that autophagy
activation might be involved. As expected, 3-MA substantially
abrogated the effect of GM1 ganglioside on decreasing α-Syn
protein levels in the MPP+-treated SH-SY5Y cells (Fig. 4a, P < 0.05).
We further determined the influence of GM1 ganglioside on the

autophagic process. Our data showed that the conversion of LC3-I
to LC3-II in SH-SY5Y cells was obviously promoted by GM1
ganglioside treatment in the presence of MPP+ (Fig. 4b). The
expression of the autophagy substrate SQSTM1/p62 was also
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reduced by GM1 ganglioside in the MPP+-treated cells (Fig. 4b).
Moreover, TEM revealed obvious autophagic vesicles in the
substantia nigra of the GM1 ganglioside-treated mice (Fig. 4c).
Importantly, confocal microscopy images revealed that GM1
ganglioside-induced autophagosomes were colocalized with α-
Syn induced by MPP+ treatment (Fig. 4d). These in vivo and
in vitro data indicated that GM1 ganglioside activated autophagy,
which participated in α-Syn clearance.
Furthermore, we used PC12α-Syn A53T cells, in which the

expression of α-Syn A53T can be induced by doxycycline
treatment, to confirm the effect of GM1 ganglioside on
autophagy and α-Syn removal. The results of confocal microscopy
(Fig. 5a) showed that LC3 puncta were increased while

doxycycline-induced α-Syn accumulation was reduced by GM1
ganglioside treatment in PC12α-Syn A53T cells, in which the
colocalization of LC3 and α-Syn was substantially enhanced
(Fig. 5a). Western blot analysis confirmed that GM1 ganglioside
caused a decline in the α-Syn protein level, which was reversed by
3-MA cotreatment (Fig. 5b). Similar to GM1 ganglioside, the
classic autophagy inducer rapamycin could also strongly decrease
the α-Syn levels (Fig. 5b).
We employed a chemical reaction approach to label GM1

ganglioside with fluorescent FITC fluorescent. Strong green
fluorescence was observed in PC12α-Syn A53T cells treated with
GM1-FITC (Fig. 5c). Apparent colocalization was observed in
the PC12α-Syn A53T cells between GM1-FITC and α-Syn, as well as
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GM1-FITC and LC3 (Fig. 5d). Taken together, these data indicate
that GM1 ganglioside activates autophagy to remove the
aggregation of α-Syn.

The ATG13-ULK1 complex is involved in GM1 ganglioside-induced
autophagy
The ULK complex consists of ULK1, ATG13, FIP200, and ATG101,
which are required to initiate the autophagic process [48, 49]. We
evaluated the effects of GM1 ganglioside on the protein
expression levels of ULK1 and ATG13. Notably, GM1 ganglioside
treatment promoted the phosphorylation of ATG13 and ULK1 in
doxycycline-treated PC12α-Syn A53T cells (Fig. 6a). Nevertheless, the
effect of GM1 ganglioside was suppressed by 3-MA treatment
(Fig. 6a). Similarly, the GM1 ganglioside-treated SH-SY5Y cells also
showed an increased ratio of p-ATG13/ATG13, and 3-MA
treatment inhibited this effect of GM1 ganglioside (Fig. 6b). Taken
together, the results revealed that GM1 ganglioside induced
autophagy by activating the ATG13-ULK1 complex.

DISCUSSION
It has been reported that GM1 ganglioside could modify α-Syn
toxicity in the α-Syn model of PD [50]. However, the mechanism
by which GM1 ganglioside reduces α-Syn accumulation remains
unclear. In the present study, GM1 ganglioside showed an obvious
protective effect against PD in the in vivo and in vitro MPTP/MPP+

models. Our results further clearly indicated that GM1 ganglioside
directly reduced the accumulation of α-Syn by using doxycycline-
treated PC12α-Syn A53T cells.
Currently, levodopa, monoamine oxidase type B inhibitors or

dopamine agonists are frequently used for PD treatment, but they
exhibit fluctuations in motor control and abnormal involuntary
movements after high-dose treatment or long-term usage [51–53].
In addition, 5-HT1A receptor agonists [54, 55] and cholinergic

inhibitors [56] have also been proven to have therapeutic effects
on PD, but these drugs present side effects associated with
cognition [57]. Hence, treatments with fewer side effects are
urgently required. Interestingly, some autophagic agents offer
new perspectives in the treatment of PD. For example, trehalose
(an autophagy enhancer) [58, 59], isorhynchophylline (a natural
alkaloid) [60], latrepirdine (a neuroactive compound) [61] and
nilotinib (a tyrosine kinase inhibitor) [62] were shown to promote
autophagy to degrade mutant α-Syn in a PD model. Therefore,
autophagy activators show promise in the treatment of PD.
Previous reports have shown that the ganglioside mix contain-

ing GM1 can induce autophagy and induce the accumulation of
autophagosomes in astrocytes [43, 44] and in β-gal-deficient
mouse brains [63]. GM1 was also demonstrated to decrease the
toxicity induced by Aβ(1-42) by increasing the expression of
autophagic markers and enhancing autophagy in vivo or in vitro
[42]. In this study, our results indicated that the cytoprotection of
GM1 ganglioside against the accumulation of α-Syn was
associated with the enhancement of autophagy, indicated by
the increased conversion of LC3-I to LC3-II, the decreased
SQSTM1/p62 expression, and the enhanced colocalization of α-
Syn and LC3. The ULK complex formed by ULK1, ATG13, ATG101,
and FIP200 is required to promote the autophagic process [64].
Moreover, ULK1 could increase the phosphorylation of ATG13 and
interact with ATG101 and FIP200 to form the ULK complex, which
eventually triggers autophagy [65, 66]. ATG13 and FIP200 are
critical for the correct localization of ULK1 to pre-autophagosomes
and the stability of the ULK1 protein, and the ULK complex is a
node that integrates incoming autophagic signals into autopha-
gosome biogenesis [48]. Our data found that GM1 ganglioside
could induce cytoprotective autophagy by upregulating the
ATG13-ULK1 complex in different neuronal cells, including human
neuroblastoma SH-SY5Y cells and PC12-inducible α-Syn A53T cells.
Although ATG13-ULK1 was preliminarily identified as a target, the

b

a

43 kDa

72 kDa

72 kDa

+MPP   (1 mM, 36 h)

GM1 (40 μM, 24 h) - +-

- -

+

+ + +

+
- +- - -

ATG13

SH-SY5Y

PC12 α-Syn A53T

p-ATG13
Ser355

β-actinβ-actin

ATG13

ULK1

p-ATG13Ser355

p-ULK1Ser555

GM1 (40 μM, 24 h)
Doxy (1 μg/mL, 12 h) - - + + +

- + - + +

43 kDa

150 kDa

150 kDa

72 kDa

72 kDa

+

+
+

Cont
GM1
MPP
MPP  +GM1
MPP  +GM1+3-MA

3-MA (5 mM, 24 h)

3-MA (5 mM, 24 h) - +- - -

Cont
GM1
Doxy
Doxy+GM1
Doxy+GM1+3-MA

Th
e

re
la

tiv
e

le
ve

lo
fp

ro
te

in

p-ATG13/ATG13 p-ULK1/ULK1
0.0

0.2

0.4

0.6

0.8

1.0 ****
*****

Th
e

re
la

tiv
e

le
ve

lo
fp

ro
te

in

p-ATG13/ATG13
0.0

0.2

0.4

0.6

0.8 *** ***

Fig. 6 Effect of GM1 ganglioside on the phosphorylation of ATG13 and ULK1. a PC12α-Syn A53T cells were treated with or without
doxycycline for 12 h, followed by treatment with GM1 ganglioside for 24 h and with or without 3-MA. The expression levels of ATG13,
p-ATG13ser355, ULK1, and p-ULK1ser555 were examined by Western blots. The quantification of the ratio of p-ATG13ser355/ATG13 and p-
ULK1ser555/ULK1 (n= 3). b Western blot analysis to confirm the protein levels of ATG13 and pATG13ser355 in SH-SY5Y cells. MPP+ was added to
SH-SY5Y cells for 36 h and then replaced with GM1 ganglioside with or without 3-MA for 24 h. Quantification of the ratio of p-ATG13ser355/
ATG13 (n= 3). Data are represented as the mean ± SEM. One-way ANOVA with LSD post hoc test was used for statistical analysis. *P < 0.05,
**P < 0.01, ***P < 0.001.

A novel mechanism for GM1 ganglioside against PD
YL Guo et al.

526

Acta Pharmacologica Sinica (2021) 42:518 – 528



interaction between GM1 ganglioside and ATG13-ULK1 requires
further investigation.
In summary, our findings demonstrate that the activation of

autophagy accounts for the anti-PD effect of GM1 ganglioside and
provides a potential theoretical basis for the mechanism of GM1
ganglioside in the clearance of α-Syn.
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