Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease

Abstract

As the population ages, Alzheimer’s disease (AD), the most common neurodegenerative disease in elderly people, will impose social and economic burdens to the world. Currently approved drugs for the treatment of AD including cholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and an N-methyl-D-aspartic acid receptor antagonist (memantine) are symptomatic but poorly affect the progression of the disease. In recent decades, the concept of amyloid-β (Aβ) cascade and tau hyperphosphorylation leading to AD has dominated AD drug development. However, pharmacotherapies targeting Aβ and tau have limited success. It is generally believed that AD is caused by multiple pathological processes resulting from Aβ abnormality, tau phosphorylation, neuroinflammation, neurotransmitter dysregulation, and oxidative stress. In this review we updated the recent development of new therapeutics that regulate neurotransmitters, inflammation, lipid metabolism, autophagy, microbiota, circadian rhythm, and disease-modified genes for AD in preclinical research and clinical trials. It is to emphasize the importance of early diagnosis and multiple-target intervention, which may provide a promising outcome for AD treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    World Health Organization. Dementia fact sheets. 2019. https://www.who.int/news-room/fact-sheets/detail/dementia.

  2. 2.

    Graham WV, Bonito-Oliva A, Sakmar TP. Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med. 2017;68:413–30.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 2005;64:1553–62.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:322–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, et al. Trial of Solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med. 2018;378:321–30.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Selkoe DJ. Alzheimer disease and aducanumab: adjusting our approach. Nat Rev Neurol. 2019;15:365–6.

    PubMed  Article  Google Scholar 

  7. 7.

    Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther. 2017;9:95.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Egan MF, Kost J, Voss T, Mukai Y, Aisen PS, Cummings JL, et al. Randomized trial of Verubecestat for prodromal Alzheimer’s disease. N Engl J Med. 2019;380:1408–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Henley D, Raghavan N, Sperling R, Aisen P, Raman R, Romano G. Preliminary results of a trial of Atabecestat in preclinical Alzheimer’s disease. N Engl J Med. 2019;380:1483–5.

    PubMed  Article  Google Scholar 

  10. 10.

    Wessels AM, Tariot PN, Zimmer JA, Selzler KJ, Bragg SM, Andersen SW, et al. Efficacy and safety of Lanabecestat for treatment of early and mild Alzheimer disease: the AMARANTH and DAYBREAK-ALZ Randomized Clinical Trials. JAMA Neurol. 2019;77:199–209.

    PubMed Central  Article  PubMed  Google Scholar 

  11. 11.

    Peters F, Salihoglu H, Rodrigues E, Herzog E, Blume T, Filser S, et al. BACE1 inhibition more effectively suppresses initiation than progression of beta-amyloid pathology. Acta Neuropathol. 2018;135:695–710.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Wiessner C, Wiederhold KH, Tissot AC, Frey P, Danner S, Jacobson LH, et al. The second-generation active Abeta immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci. 2011;31:9323–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Yang T, Dang Y, Ostaszewski B, Mengel D, Steffen V, Rabe C, et al. Target engagement in an alzheimer trial: Crenezumab lowers amyloid beta oligomers in cerebrospinal fluid. Ann Neurol. 2019;86:215–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Novak P, Schmidt R, Kontsekova E, Kovacech B, Smolek T, Katina S, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther. 2018;10:108.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    West T, Hu Y, Verghese PB, Bateman RJ, Braunstein JB, Fogelman I, et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J Prev Alzheimers Dis. 2017;4:236–41.

    CAS  PubMed  Google Scholar 

  16. 16.

    Boxer AL, Qureshi I, Ahlijanian M, Grundman M, Golbe LI, Litvan I, et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 2019;18:549–58.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Thal DR, Walter J, Saido TC, Fandrich M. Neuropathology and biochemistry of Abeta and its aggregates in Alzheimer’s disease. Acta Neuropathol. 2015;129:167–82.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Giacobini E, Gold G. Alzheimer disease therapy-moving from amyloid-beta to tau. Nat Rev Neurol. 2013;9:677–86.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement. 2016;12:719–32.

    PubMed  Article  Google Scholar 

  20. 20.

    Zhang F, Zhong R, Li S, Fu Z, Cheng C, Cai H, et al. Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-kappaB signaling in Alzheimer’s disease mice and wild-type littermates. Front Aging Neurosci. 2017;9:282.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013:316523.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Onyango IG, Dennis J, Khan SM. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 2016;7:201–14.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Zhang F, Zhong R, Qi H, Li S, Cheng C, Liu X, et al. Impacts of acute hypoxia on Alzheimer’s disease-like pathologies in APP(swe)/PS1(dE9) mice and their wild type littermates. Front Neurosci. 2018;12:314.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Nilsson P, Saido TC. Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Abeta peptide. Bioessays. 2014;36:570–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–33.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Bessey LJ, Walaszek A. Management of behavioral and psychological symptoms of dementia. Curr Psychiatry Rep. 2019;21:66.

    PubMed  Article  Google Scholar 

  27. 27.

    Magierski R, Sobow T, Schwertner E, Religa D. Pharmacotherapy of behavioral and psychological symptoms of dementia: state of the art and future progress. Front Pharmacol. 2020;11:1168.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Zhang F, Zhong R, Li S, Chang RC, Le W. The missing link between sleep disorders and age-related dementia: recent evidence and plausible mechanisms. J Neural Transm. 2017;124:559–68.

    PubMed  Article  Google Scholar 

  29. 29.

    Mozaffarnia S, Teimuri-Mofrad R, Rashidi MR. Design, synthesis and biological evaluation of 2,3-dihydro-5,6-dimethoxy-1H-inden-1-one and piperazinium salt hybrid derivatives as hAChE and hBuChE enzyme inhibitors. Eur J Med Chem. 2020;191:112140.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Xu A, He F, Zhang X, Li X, Ran Y, Wei C, et al. Tacrine-hydroxamate derivatives as multitarget-directed ligands for the treatment of Alzheimer’s disease: design, synthesis, and biological evaluation. Bioorg Chem. 2020;98:103721.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Jia JY, Zhao QH, Liu Y, Gui YZ, Liu GY, Zhu DY, et al. Phase I study on the pharmacokinetics and tolerance of ZT-1, a prodrug of huperzine A, for the treatment of Alzheimer's disease. Acta Pharmacol Sin. 2013;34:976–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Plazas E, Hagenow S, Avila Murillo M, Stark H, Cuca LE. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Abeta1-42 aggregation. Bioorg Chem. 2020;98:103722.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. 33.

    Augustin N, Nuthakki VK, Abdullaha M, Hassan QP, Gandhi SG, Bharate SB. Discovery of helminthosporin, an anthraquinone isolated from Rumex abyssinicus Jacq as a dual cholinesterase inhibitor. ACS Omega. 2020;5:1616–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Moss DE, Fariello RG, Sahlmann J, Sumaya I, Pericle F, Braglia E. A randomized phase I study of methanesulfonyl fluoride, an irreversible cholinesterase inhibitor, for the treatment of Alzheimer’s disease. Br J Clin Pharmacol. 2013;75:1231–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Yang J, Yun Y, Miao Y, Sun J, Wang X. Synthesis and biological evaluation of 3-arylbenzofuranone derivatives as potential anti-Alzheimer’s disease agents. J Enzym Inhib Med Chem. 2020;35:805–14.

    CAS  Article  Google Scholar 

  36. 36.

    Wu J, Pistolozzi M, Liu S, Tan W. Design, synthesis and biological evaluation of novel carbamates as potential inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg Med Chem. 2020;28:115324.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA receptors in Alzheimer’s disease. Front Neurosci. 2019;13:43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Companys-Alemany J, Turcu AL, Bellver-Sanchis A, Loza MI, Brea JM, Canudas AM, et al. A novel NMDA receptor antagonist protects against cognitive decline presented by senescent mice. Pharmaceutics. 2020;12:284.

    CAS  PubMed Central  Article  Google Scholar 

  39. 39.

    Yang T, Shi Y, Lin C, Yan C, Zhang D, Lin J. Pharmacokinetics, bioavailability and tissue distribution study of JCC-02, a novel N-methyl-D-aspartate (NMDA) receptor inhibitor, in rats by LC-MS/MS. Eur J Pharm Sci. 2019;131:146–52.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Hu S, Hu H, Mak S, Cui G, Lee M, Shan L, et al. A novel tetramethylpyrazine derivative prophylactically protects against glutamate-induced excitotoxicity in primary neurons through the blockage of N-Methyl-D-aspartate receptor. Front Pharmacol. 2018;9:73.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Yang Y, Ji WG, Zhu ZR, Wu YL, Zhang ZY, Qu SC. Rhynchophylline suppresses soluble Abeta1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology. 2018;135:100–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Barcelos NM, Van Ness PH, Wagner AF, MacAvoy MG, Mecca AP, Anderson GM, et al. Guanfacine treatment for prefrontal cognitive dysfunction in older participants: a randomized clinical trial. Neurobiol Aging. 2018;70:117–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Stiedl O, Pappa E, Konradsson-Geuken A, Ogren SO. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol. 2015;6:162.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Ramirez MJ. 5-HT6 receptors and Alzheimer's disease. Alzheimers Res Ther. 2013;5:15.

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Khoury R, Grysman N, Gold J, Patel K, Grossberg GT. The role of 5-HT6-receptor antagonists in Alzheimer's disease: an update. Expert Opin Investig Drugs. 2018;27:523–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Atri A, Frolich L, Ballard C, Tariot PN, Molinuevo JL, Boneva N, et al. Effect of Idalopirdine as adjunct to cholinesterase inhibitors on change in cognition in patients with Alzheimer disease: three randomized clinical trials. JAMA. 2018;319:130–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Fullerton T, Binneman B, David W, Delnomdedieu M, Kupiec J, Lockwood P, et al. A phase 2 clinical trial of PF-05212377 (SAM-760) in subjects with mild to moderate Alzheimer’s disease with existing neuropsychiatric symptoms on a stable daily dose of donepezil. Alzheimers Res Ther. 2018;10:38.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein Cell. 2017;8:90–102.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Li Z, Zhu H, Guo Y, Du X, Qin C. Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer's disease. J Neurochem. 2020;155:448–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Kim CS, Cha L, Sim M, Jung S, Chun WY, Baik HW, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling elderly: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci. 2020:glaa090.

  51. 51.

    Syed YY. Sodium oligomannate: first approval. Drugs. 2020;80:441–4.

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29:787–803.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Gyengesi E, Munch G. In search of an anti-inflammatory drug for Alzheimer disease. Nat Rev Neurol. 2020;16:131–2.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Wang J, Tan L, Wang HF, Tan CC, Meng XF, Wang C, et al. Anti-inflammatory drugs and risk of Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimers Dis. 2015;44:385–96.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  55. 55.

    Howard R, Zubko O, Bradley R, Harper E, Pank L, O’Brien J, et al. Minocycline at 2 different dosages vs placebo for patients with mild alzheimer disease: a randomized clinical trial. JAMA Neurol. 2019;77:164–74.

    PubMed Central  Article  Google Scholar 

  56. 56.

    Merlo S, Spampinato S, Canonico PL, Copani A, Sortino MA. Alzheimer’s disease: brain expression of a metabolic disorder? Trends Endocrinol Metab. 2010;21:537–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Lane-Donovan C, Herz JApoE. ApoE receptors, and the synapse in Alzheimer’s disease. Trends Endocrinol Metab. 2017;28:273–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Sydenham E, Dangour AD, Lim WS. Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst Rev. 2012:CD005379.

  59. 59.

    Chhetri JK, de Souto Barreto P, Cantet C, Pothier K, Cesari M, Andrieu S, et al. Effects of a 3-year multi-domain intervention with or without Omega-3 supplementation on cognitive functions in older subjects with increased CAIDE dementia scores. J Alzheimers Dis. 2018;64:71–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Andrieu S, Guyonnet S, Coley N, Cantet C, Bonnefoy M, Bordes S, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol. 2017;16:377–89.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Dhakal S, Subhan M, Fraser JM, Gardiner K, Macreadie I. Simvastatin efficiently reduces levels of Alzheimer’s amyloid beta in yeast. Int J Mol Sci. 2019;20:3531.

    CAS  PubMed Central  Article  Google Scholar 

  62. 62.

    Zhu XC, Dai WZ, Ma T. Overview the effect of statin therapy on dementia risk, cognitive changes and its pathologic change: a systematic review and meta-analysis. Ann Transl Med. 2018;6:435.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Xuan K, Zhao T, Qu G, Liu H, Chen X, Sun Y. The efficacy of statins in the treatment of Alzheimer’s disease: a meta-analysis of randomized controlled trial. Neurol Sci. 2020;41:1391–404.

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Kemp EC, Ebner MK, Ramanan S, Godek TA, Pugh EA, Bartlett HH, et al. Statin use and risk of cognitive decline in the ADNI cohort. Am J Geriatr Psychiatry. 2020;28:507–17.

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Davis KAS, Bishara D, Perera G, Molokhia M, Rajendran L, Stewart RJ. Benefits and harms of statins in people with dementia: a systematic review and meta-analysis. J Am Geriatr Soc. 2020;68:650–8.

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Sinyavskaya L, Gauthier S, Renoux C, Dell’Aniello S, Suissa S, Brassard P. Comparative effect of statins on the risk of incident Alzheimer disease. Neurology. 2018;90:e179–e87.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Rubinsztein DC, Bento CF, Deretic V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med. 2015;212:979–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol. 2013;105:49–59.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Friedman LG, Qureshi YH, Yu WH. Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2015;12:94–108.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Liu Y, Zhou H, Yin T, Gong Y, Yuan G, Chen L, et al. Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J Colloid Interface Sci. 2019;552:388–400.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Moran M, Lynch CA, Walsh C, Coen R, Coakley D, Lawlor BA. Sleep disturbance in mild to moderate Alzheimer’s disease. Sleep Med. 2005;6:347–52.

    PubMed  Article  Google Scholar 

  72. 72.

    Qiu H, Zhong R, Liu H, Zhang F, Li S, Le W. Chronic sleep deprivation exacerbates learning-memory disability and Alzheimer’s disease-like pathologies in AbetaPP(swe)/PS1(DeltaE9) mice. J Alzheimers Dis. 2016;50:669–85.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Zhang F, Zhong R, Li S, Fu Z, Wang R, Wang T, et al. Alteration in sleep architecture and electroencephalogram as an early sign of Alzheimer’s disease preceding the disease pathology and cognitive decline. Alzheimers Dement. 2019;15:590–7.

    PubMed  Article  Google Scholar 

  74. 74.

    Chen D, Mei Y, Kim N, Lan G, Gan CL, Fan F, et al. Melatonin directly binds and inhibits death-associated protein kinase 1 function in Alzheimer’s disease. J Pineal Res. 2020;69:e12665.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Singer C, Tractenberg RE, Kaye J, Schafer K, Gamst A, Grundman M, et al. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep. 2003;26:893–901.

    PubMed  Article  Google Scholar 

  76. 76.

    Hatta K, Kishi Y, Wada K, Takeuchi T, Odawara T, Usui C, et al. Preventive effects of ramelteon on delirium: a randomized placebo-controlled trial. JAMA Psychiatry. 2014;71:397–403.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Zhou F, Yan XD, Wang C, He YX, Li YY, Zhang J, et al. Suvorexant ameliorates cognitive impairments and pathology in APP/PS1 transgenic mice. Neurobiol Aging. 2020;91:66–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Herring WJ, Ceesay P, Snyder E, Bliwise D, Budd K, Hutzelmann J, et al. Polysomnographic assessment of suvorexant in patients with probable Alzheimer’s disease dementia and insomnia: a randomized trial. Alzheimers Dement. 2020;16:541–51.

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Kandiah N, Ong PA, Yuda T, Ng LL, Mamun K, Merchant RA, et al. Treatment of dementia and mild cognitive impairment with or without cerebrovascular disease: expert consensus on the use of Ginkgo biloba extract, EGb 761((R)). CNS Neurosci Ther. 2019;25:288–98.

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Kuo LC, Song YQ, Yao CA, Cheng IH, Chien CT, Lee GC, et al. Ginkgolide A prevents the amyloid-beta-induced depolarization of cortical neurons. J Agric Food Chem. 2019;67:81–9.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Das TK, Jana P, Chakrabarti SK, Abdul Hamid MRW. Curcumin downregulates GSK3 and Cdk5 in scopolamine-induced Alzheimer’s disease rats abrogating Abeta40/42 and tau hyperphosphorylation. J Alzheimers Dis Rep. 2019;3:257–67.

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Thota RN, Rosato JI, Dias CB, Burrows TL, Martins RN, Garg ML. Dietary supplementation with curcumin reduce circulating levels of glycogen synthase kinase-3beta and islet amyloid polypeptide in adults with high risk of type 2 diabetes and Alzheimer’s disease. Nutrients. 2020;12:1032.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  83. 83.

    de la Rubia Orti JE, Garcia-Pardo MP, Drehmer E, Sancho Cantus D, Julian Rochina M, Aguilar MA, et al. Improvement of main cognitive functions in patients with Alzheimer’s disease after treatment with coconut oil enriched Mediterranean diet: a pilot study. J Alzheimers Dis. 2018;65:577–87.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, et al. Role of RAGE in Alzheimer’s disease. Cell Mol Neurobiol. 2016;36:483–95.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Burstein AH, Sabbagh M, Andrews R, Valcarce C, Dunn I, Altstiel L. Development of Azeliragon, an oral small molecule antagonist of the receptor for advanced glycation endproducts, for the potential slowing of loss of cognition in mild Alzheimer’s Disease. J Prev Alzheimers Dis. 2018;5:149–54.

    CAS  PubMed  Google Scholar 

  86. 86.

    Ruscher K, Wieloch T. The involvement of the sigma-1 receptor in neurodegeneration and neurorestoration. J Pharmacol Sci. 2015;127:30–5.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Hampel H, Williams C, Etcheto A, Goodsaid F, Parmentier F, Sallantin J, et al. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer’s disease therapy: analysis of the blarcamesine (ANAVEX2-73) phase 2a clinical study. Alzheimers Dement. 2020;6:e12013.

    Google Scholar 

  88. 88.

    Garay RP, Grossberg GT. AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin Investig Drugs. 2017;26:121–32.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Poplawski SG, Garbett KA, McMahan RL, Kordasiewicz HB, Zhao H, Kennedy AJ, et al. An antisense oligonucleotide leads to suppressed transcription of Hdac2 and long-term memory enhancement. Mol Ther Nucleic Acids. 2020;19:1399–412.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Lv L, Yang F, Li H, Yuan J. Brain-targeted co-delivery of beta-amyloid converting enzyme 1 shRNA and epigallocatechin-3-gallate by multifunctional nanocarriers for Alzheimer’s disease treatment. IUBMB Life. 2020;72:1819–29.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J. MicroRNAs in Alzheimer’s disease: diagnostic markers or therapeutic agents? Front Pharmacol. 2019;10:665.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Chopra N, Wang R, Maloney B, Nho K, Beck JS, Pourshafie N, et al. MicroRNA-298 reduces levels of human amyloid-beta precursor protein (APP), beta-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry. 2020.

  93. 93.

    Barros-Viegas AT, Carmona V, Ferreiro E, Guedes J, Cardoso AM, Cunha P, et al. miRNA-31 improves cognition and abolishes Amyloid-beta pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease. Mol Ther Nucleic Acids. 2020;19:1219–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Mai H, Fan W, Wang Y, Cai Y, Li X, Chen F, et al. Intranasal administration of miR-146a Agomir rescued the pathological process and cognitive impairment in an AD mouse model. Mol Ther Nucleic Acids. 2019;18:681–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Li P, Xu Y, Wang B, Huang J, Li Q. miR-34a-5p and miR-125b-5p attenuate Abeta-induced neurotoxicity through targeting BACE1. J Neurol Sci. 2020;413:116793.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Kim J, Lee Y, Lee S, Kim K, Song M, Lee J.Mesenchymal stem cell therapy and Alzheimer’s disease: current status and future perspectives. J Alzheimers Dis. 2020;77:1–14.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Qin C, Lu Y, Wang K, Bai L, Shi G, Huang Y, et al. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: a meta-analytic review on potential mechanisms. Transl Neurodegener. 2020;9:20.

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Wang J, Hu WW, Jiang Z, Feng MJ. Advances in treatment of neurodegenerative diseases: perspectives for combination of stem cells with neurotrophic factors. World J Stem Cells. 2020;12:323–38.

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Santamaria G, Brandi E, Vitola P, Grandi F, Ferrara G, Pischiutta F, et al. Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice. Cell Death Differ. 2020.

  100. 100.

    Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, et al. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimers Dement. 2015;1:95–102.

    Article  Google Scholar 

  101. 101.

    Bahar-Fuchs A, Clare L, Woods B. Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: a review. Alzheimers Res Ther. 2013;5:35.

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Zhang F, Niu L, Li S, Le W.Pathological impacts of chronic hypoxia on Alzheimer’s disease. ACS Chem Neurosci. 2019;10:902

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Chen J, Zhang F, Zhao L, Cheng C, Zhong R, Dong C, et al. Hyperbaric oxygen ameliorates cognitive impairment in patients with Alzheimer’s disease and amnestic mild cognitive impairment. Alzheimers Dement. 2020;6:e12030.

    Google Scholar 

  104. 104.

    Cantone M, Di Pino G, Capone F, Piombo M, Chiarello D, Cheeran B, et al. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol. 2014;125:1509–32.

    PubMed  Article  Google Scholar 

  105. 105.

    Manenti R, Cotelli M, Robertson IH, Miniussi C. Transcranial brain stimulation studies of episodic memory in young adults, elderly adults and individuals with memory dysfunction: a review. Brain Stimul. 2012;5:103–9.

    PubMed  Article  Google Scholar 

  106. 106.

    Bystad M, Gronli O, Rasmussen ID, Gundersen N, Nordvang L, Wang-Iversen H, et al. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer’s disease: a randomized, placebo-controlled trial. Alzheimers Res Ther. 2016;8:13.

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM, et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol. 2008;63:119–23.

    PubMed  Article  Google Scholar 

  108. 108.

    Sperling RA, Dickerson BC, Pihlajamaki M, Vannini P, LaViolette PS, Vitolo OV, et al. Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med. 2010;12:27–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Woods B, Aguirre E, Spector AE, Orrell M. Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst Rev. 2012:CD005562.

  110. 110.

    Riemersma-van der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJ. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA. 2008;299:2642–55.

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Ohman H, Savikko N, Strandberg TE, Kautiainen H, Raivio MM, Laakkonen ML, et al. Effects of exercise on cognition: the Finnish Alzheimer disease exercise trial: a randomized, controlled trial. J Am Geriatr Soc. 2016;64:731–8.

    PubMed  Article  Google Scholar 

  112. 112.

    Valenzuela PL, Castillo-Garcia A, Morales JS, la Villa P, Hampel H, Emanuele E, et al. Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res Rev. 2020;62:101108.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Wang YY, Yu SF, Xue HY, Li Y, Zhao C, Jin YH. Effectiveness and safety of acupuncture for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2020;12:98.

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Samson S, Clement S, Narme P, Schiaratura L, Ehrle N. Efficacy of musical interventions in dementia: methodological requirements of nonpharmacological trials. Ann N Y Acad Sci. 2015;1337:249–55.

    PubMed  Article  Google Scholar 

  115. 115.

    Agatonovic-Kustrin S, Chan CKY, Gegechkori V, Morton DW. Models for skin and brain penetration of major components from essential oils used in aromatherapy for dementia patients. J Biomol Struct Dyn. 2020;38:2402–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Revesz D, Rydenhag B, Ben-Menachem E. Complications and safety of vagus nerve stimulation: 25 years of experience at a single center. J Neurosurg Pediatr. 2016;18:97–104.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the funding from National Natural Science Foundation of China (NSFC 81771521).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei-dong Le.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhong, Rj., Cheng, C. et al. New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 42, 1382–1389 (2021). https://doi.org/10.1038/s41401-020-00565-5

Download citation

Keywords

  • Alzheimer’s disease
  • new therapeutics
  • gut microbiota regulators
  • anti-inflammatory drugs
  • lipid metabolism regulators
  • autophagic modifiers
  • circadian rhythm regulators
  • gene and cell therapies

Further reading

Search

Quick links