Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction

Abstract

Reduction of expression and activity of sirtuin 3 (SIRT3) contributes to the pathogenesis of cardiomyopathy via inducing mitochondrial injury and energy metabolism disorder. However, development of effective ways and agents to modulate SIRT3 remains a big challenge. In this study we explored the upstream suppressor of SIRT3 in angiotensin II (Ang II)-induced cardiac hypertrophy in mice. We first found that SIRT3 deficiency exacerbated Ang II-induced cardiac hypertrophy, and resulted in the development of spontaneous heart failure. Since miRNAs play crucial roles in the pathogenesis of cardiac hypertrophy, we performed miRNA sequencing on myocardium tissues from Ang II-infused Sirt3−/− and wild type mice, and identified microRNA-214 (miR-214) was significantly up-regulated in Ang II-infused mice. Similar results were also obtained in Ang II-treated neonatal mouse cardiomyocytes (NMCMs). Using dual-luciferase reporter assay we demonstrated that SIRT3 was a direct target of miR-214. Overexpression of miR-214 in vitro and in vivo decreased the expression of SIRT3, which resulted in extensive mitochondrial damages, thereby facilitating the onset of hypertrophy. In contrast, knockdown of miR-214 counteracted Ang II-induced detrimental effects via restoring SIRT3, and ameliorated mitochondrial morphology and respiratory activity. Collectively, these results demonstrate that miR-214 participates in Ang II-induced cardiac hypertrophy by directly suppressing SIRT3, and subsequently leading to mitochondrial malfunction, suggesting the potential of miR-214 as a promising intervention target for antihypertrophic therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: SIRT3 deficiency exacerbates Ang II-induced pathological cardiac hypertrophy.
Fig. 2: MiRNA expression profiles in mouse cardiac tissues following Ang II treatment.
Fig. 3: Upregulation of miR-214 promotes Ang II-induced hypertrophic responses in vitro and in vivo.
Fig. 4: Inhibition of miR-214 attenuates pathological hypertrophy induced by Ang II in vitro and in vivo.
Fig. 5: SIRT3 is directly targeted and negatively regulated by miR-214.
Fig. 6: Upregulation of SIRT3 attenuates miR-214-induced cardiomyocyte hypertrophy.
Fig. 7: MiR-214 impairs mitochondrial homeostasis and respiratory activity.
Fig. 8: MiR-214 downregulates Mfn2 by suppressing SIRT3/FoxO3a signaling.
Fig. 9: Schematic of the proposed role of miR-214 in Ang II-induced cardiac hypertrophy.

References

  1. 1.

    Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol. 2020;98:74–84.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Gottlieb RA, Bernstein D. Mitochondrial remodeling: rearranging, recycling, and reprogramming. Cell Calcium. 2016;60:88–101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Shirihai OS, Song M, Dorn GW. How mitochondrial dynamism orchestrates mitophagy. Circ Res. 2015;116:1835–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Tang X, Chen XF, Chen HZ, Liu DP. Mitochondrial Sirtuins in cardiometabolic diseases. Clin Sci. 2017;131:2063–78.

    CAS  Article  Google Scholar 

  7. 7.

    Li P, Ge J, Li H. Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol. 2020;17:96–115.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Yang W, Nagasawa K, Münch C, Xu YJ, Satterstrom K, Jeong SM, et al. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell. 2016;167:985–1000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Samant SA, Zhang HJ, Hong ZG, Pillai VB, Sundaresan NR, Wolfgeher D, et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol. 2014;34:807–19.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Zhang XK, Ji RP, Liao XH, Castillero E, Kennel PJ, Brunjes DL, et al. MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation. 2018;137:2052–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Hu DX, Liu XB, Song WC, Wang JA. Roles of SIRT3 in heart failure: from bench to bedside. J Zhejiang Univ Sci B. 2016;17:821–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 2010;285:3133–44.

    CAS  Article  Google Scholar 

  14. 14.

    Yue ZB, Ma YZ, You J, Li ZM, Ding YQ, He P, et al. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Exp Cell Res. 2016;347:261–73.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther. 2018;188:140–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Gertz M, Steegborn C. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Cell Mol Life Sci. 2016;73:2871–96.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Lai EC. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30:363–4.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Felekkis K, Touvana E, Stefanou C, Deltas C. MicroRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14:236–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Duygu B, de Windt LJ, da Costa Martins PA. Targeting microRNAs in heart failure. Trends Cardiovasc Med. 2016;26:99–110.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ, Bridges CR. The role of microRNAs in cardiac development and regenerative capacity. Am J Physiol Heart Circ Physiol. 2016;310:H528–H541.

    PubMed  Article  Google Scholar 

  22. 22.

    Katoh M. Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Front Cell Dev Biol. 2014;2:61.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39:1073–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Yang XW, Qin YJ, Shao SX, Yu YQ, Zhang CY, Dong H, et al. MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int Heart J. 2016;57:247–50.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Sun M, Yu HY, Zhang YY, Li ZJ, Gao W. MicroRNA-214 mediates isoproterenol-induced proliferation and collagen synthesis in cardiac fibroblasts. Sci Rep. 2015;5:18315.

    Google Scholar 

  26. 26.

    Duan QL, Yang L, Gong W, Chaugai S, Wang F, Chen C, et al. MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol. 2015;230:1964–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Li JY, Huang JY, Lu J, Guo Z, Li ZM, Gao H, et al. Sirtuin 1 represses PKC‐ζ activity through regulating interplay of acetylation and phosphorylation in cardiac hypertrophy. Br J Pharmacol. 2019;176:416–35.

    CAS  PubMed  Google Scholar 

  28. 28.

    Wang PX, Wang LP, Lu J, Hu YH, Wang QQ, Li ZZ, et al. SESN2 protects against doxorubicin-induced cardiomyopathy via rescuing mitophagy and improving mitochondrial function. J Mol Cell Cardiol. 2019;133:125–37.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Fu JJ, Gao J, Pi RB, Liu PQ. An optimized protocol for culture of cardiomyocyte from neonatal rat. Cytotechnology. 2005;49:109–16.

    CAS  Article  Google Scholar 

  30. 30.

    Winer LSP, Wu M. Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate. PLoS One. 2014;9:e109916.

    Article  CAS  Google Scholar 

  31. 31.

    Zhao YF, Ponnusamy M, Zhang L, Zhang Y, Liu CY, Yu WP, et al. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol. 2017;816:138–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A. 2013;110:6601–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Ong SB, Hausenloy DJ. Mitochondrial dynamics as a therapeutic target for treating cardiac diseases. Handb Exp Pharmacol. 2017;240:251–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Tseng AHH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013;63:222–34.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim HS, Mishra M, et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the Mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci. 2008;4:291–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Bisping E, Wakula P, Poteser M, Heinzel FR. Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol. 2014;64:293–305.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Xu XD, Song XW, Li Q, Wang GK, Jing Q, Qin YW. Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J Cell Physiol. 2012;227:1391–8.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Nie X, Fan JH, Li HP, Yin ZW, Zhao YR, Dai BB, et al. miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN. Mol Ther Nucleic Acids. 2018;12:254–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Shi JY, Chen C, Xu X, Lu Q. miR-29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy. Acta Physiol. 2019;227:e13323.

    Google Scholar 

  40. 40.

    Yin HL, Zhao LH, Zhang SL, Zhang Y, Lei SY. MicroRNA-1 suppresses cardiac hypertrophy by targeting nuclear factor of activated T cells cytoplasmic 3. Mol Med Rep. 2015;12:8282–8.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Zaglia T, Ceriotti P, Campo A, Borile G, Armani A, Carullo P, et al. Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proc Natl Acad Sci U S A. 2017;114:E9006–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89:1401–38.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Pinti MV, Hathaway QA, Hollander JM. Role of microRNA in metabolic shift during heart failure. Am J Physiol Heart Circ Physiol. 2017;312:H33–H45.

    PubMed  Article  Google Scholar 

  44. 44.

    Koentges C, Pfeil K, Schnick T, Wiese S, Dahlbock R, Cimolai MC, et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol. 2015;110:36.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Wei T, Huang GJ, Gao J, Huang CL, Sun MW, Wu J, et al. Sirtuin 3 deficiency accelerates hypertensive cardiac remodeling by impairing angiogenesis. J Am Heart Assoc. 2017;6:e006114.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, et al. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2017;14:238–50.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res. 2012;110:1109–24.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Balaban RS. Domestication of the cardiac mitochondrion for energy conversion. J Mol Cell Cardiol. 2009;46:832–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Parodi-Rullán RM, Chapa-Dubocq X, Rullán PJ, Jang S, Javadov S. High sensitivity of SIRT3 deficient hearts to sschemia-reperfusion is associated with mitochondrial abnormalities. Front Pharmacol. 2017;8:275.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res. 2020;126:439–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    van de Ven RAH, Santos D, Haigis MC. Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol Med. 2017;23:320–31.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Borniquel S, García-Quintáns N, Valle I, Olmos Y, Wild B, Martínez-Granero F, et al. Inactivation of Foxo3a and subsequent downregulation of PGC-1 alpha mediate nitric oxide-induced endothelial cell migration. Mol Cell Biol. 2010;30:4035–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Soriano FX, Liesa M, Bach D, Chan DC, Palacín M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, sstrogen-related receptor-alpha, and mitofusin 2. Diabetes. 2006;55:1783–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Seo AY, Joseph AM, Dutta D, Hwang JCY, Aris JP, Leeuwenburgh C. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci. 2010;123:2533–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455:64–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455:58–63.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Yang T, Zhang GF, Chen XF, Gu HH, Fu SZ, Xu HF, et al. MicroRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochem Biophys Res Commun. 2013;436:578–84.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Tang CM, Liu FZ, Zhu JN, Fu YH, Lin QX, Deng CY, et al. Myocyte-specific enhancer factor 2C: a novel target gene of miR-214-3p in suppressing angiotensin II-induced cardiomyocyte hypertrophy. Sci Rep. 2016;6:36146.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (81872860, 81673433), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Y093), the National Major Special Projects for the Creation and Manufacture of New Drugs (2019ZX09301104), the National Engineering and Technology Research Center for New Drug Druggability Evaluation (Seed Program of Guangdong Province, 2017B090903004), the Special Program for Applied Science and Technology of Guangdong Province (2015B020232009), the Guangdong Basic and Applied Basic Research Foundation (2020A1515011512) and the Young Teacher Training Program of Sun Yat-sen University (18ykpy26).

Author information

Affiliations

Authors

Contributions

PQL, JTY and YQD were responsible for the experimental design and supervision of this project. YQD performed most of the experiments and was the main writer of the manuscript. YHZ, JL, ZBY and WJY contributed to animal experiments. YHH and PXW contributed to the cell culture and immunofluorescence analysis. JYL, BL and SDC contributed to the data analysis and collation. All authors made important suggestions regarding the manuscript.

Corresponding authors

Correspondence to Jian-tao Ye or Pei-qing Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, Yq., Zhang, Yh., Lu, J. et al. MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction. Acta Pharmacol Sin 42, 1422–1436 (2021). https://doi.org/10.1038/s41401-020-00563-7

Download citation

Keywords

  • cardiac hypertrophy
  • angiotensin II
  • miR-214
  • SIRT3
  • mitochondrial malfunction
  • neonatal mouse cardiomyocytes

Search

Quick links