Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target

Abstract

Cardiovascular and metabolic diseases are the leading causes of death and disability worldwide and impose a tremendous socioeconomic burden on individuals as well as the healthcare system. Fibronectin type III domain-containing 5 (FNDC5) is a widely distributed transmembrane glycoprotein that can be proteolytically cleaved and secreted as irisin to regulate glycolipid metabolism and cardiovascular homeostasis. In this review, we present the current knowledge on the predictive and therapeutic role of FNDC5 in a variety of cardiovascular and metabolic diseases, such as hypertension, atherosclerosis, ischemic heart disease, arrhythmia, metabolic cardiomyopathy, cardiac remodeling, heart failure, diabetes mellitus, and obesity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: FNDC5 has pleiotropic effects on cardiovascular and metabolic diseases.

References

  1. 1.

    Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-based chronic disease, adiposity and dysglycemia drivers: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:525–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Teufel A, Malik N, Mukhopadhyay M, Westphal H. Frcp1 and Frcp2, two novel fibronectin type III repeat containing genes. Gene. 2002;297:79–83.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Ferrer-Martinez A, Ruiz-Lozano P, Chien KR. Mouse PeP: a novel peroxisomal protein linked to myoblast differentiation and development. Dev Dyn. 2002;224:154–67.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belen CA, et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One. 2013;8:e60563.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Zhang X, Hu C, Kong CY, Song P, Wu HM, Xu SC, et al. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ. 2020;27:540–55.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Zhang X, Hu C, Yuan YP, Ma ZG, Tang QZ. A brief overview about the physiology of fibronectin type III domain-containing 5. Cell Signal. 2020;76:109805.

  8. 8.

    Liao Q, Qu S, Tang LX, Li LP, He DF, Zeng CY, et al. Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis. Acta Pharmacol Sin. 2019;40:1314–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Ling L, Chen D, Tong Y, Zang YH, Ren XS, Zhou H, et al. Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats. J Hypertens. 2018;36:1104–14.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Chen K, Xu Z, Liu Y, Wang Z, Li Y, Xu X, et al. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci Transl Med. 2017;9:eaao6298.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Liu TY, Xiong XQ, Ren XS, Zhao MX, Shi CX, Wang JJ, et al. FNDC5 alleviates hepatosteatosis by restoring AMPK/mTOR-mediated autophagy, fatty acid oxidation, and lipogenesis in mice. Diabetes. 2016;65:3262–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y, Nagano K, et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell. 2018;175:1756–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Peng H, Wang Q, Lou T, Qin J, Jung S, Shetty V, et al. Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat Commun. 2017;8:1493.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Perakakis N, Triantafyllou GA, Fernandez-Real JM, Huh JY, Park KH, Seufert J, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13:324–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Xiong XQ, Chen D, Sun HJ, Ding L, Wang JJ, Chen Q, et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta. 2015;1852:1867–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Li RL, Wu SS, Wu Y, Wang XX, Chen HY, Xin JJ, et al. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway. J Mol Cell Cardiol. 2018;121:242–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Benetos A, Petrovic M, Strandberg T. Hypertension management in older and frail older patients. Circ Res. 2019;124:1045–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Zhang LJ, Xie Q, Tang CS, Zhang AH. Expressions of irisin and urotensin II and their relationships with blood pressure in patients with preeclampsia. Clin Exp Hypertens. 2017;39:460–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    De Meneck F, Victorino DSL, Oliveira V, Do FM. High irisin levels in overweight/obese children and its positive correlation with metabolic profile, blood pressure, and endothelial progenitor cells. Nutr Metab Cardiovasc Dis. 2018;28:756–64.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20.

    Celik HT, Akkaya N, Erdamar H, Gok S, Kazanci F, Demircelik B, et al. The effects of valsartan and amlodipine on the levels of irisin, adropin, and perilipin. Clin Lab. 2015;61:1889–95.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Brondani LA, Boelter G, Assmann TS, Leitao CB, Canani LH, Crispim D. Irisin-encoding gene (FNDC5) variant is associated with changes in blood pressure and lipid profile in type 2 diabetic women but not in men. Metabolism. 2015;64:952–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Wang H, Wang X, Cao Y, Han W, Guo Y, Yang G, et al. Association of polymorphisms of preptin, irisin and adropin genes with susceptibility to coronary artery disease and hypertension. Medicine. 2020;99:e19365.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Carmichael CY, Kuwabara JT, Pascale CL, Moreira JD, Mahne SE, Kapusta DR, et al. Hypothalamic paraventricular nucleus Gαi2 (guanine nucleotide-binding protein alpha inhibiting activity polypeptide 2) protein-mediated neural control of the kidney and the salt sensitivity of blood pressure. Hypertension. 2020;75:1002–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Mukerjee S, Gao H, Xu J, Sato R, Zsombok A, Lazartigues E. ACE2 and ADAM17 interaction regulates the activity of presympathetic neurons. Hypertension. 2019;74:1181–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Huo CJ, Yu XJ, Sun YJ, Li HB, Su Q, Bai J, et al. Irisin lowers blood pressure by activating the Nrf2 signaling pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Toxicol Appl Pharmacol. 2020;394:114953.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Hou N, Han F, Sun X. The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin Endocrinol. 2015;83:339–43.

    CAS  Article  Google Scholar 

  27. 27.

    Xiang L, Xiang G, Yue L, Zhang J, Zhao L. Circulating irisin levels are positively associated with endothelium-dependent vasodilation in newly diagnosed type 2 diabetic patients without clinical angiopathy. Atherosclerosis. 2014;235:328–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Inoue K, Fujie S, Hasegawa N, Horii N, Uchida M, Iemitsu K, et al. Aerobic exercise training-induced irisin secretion is associated with the reduction of arterial stiffness via nitric oxide production in adults with obesity. Appl Physiol Nutr Metab. 2020;45:715–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Fu J, Han Y, Wang J, Liu Y, Zheng S, Zhou L, et al. Irisin lowers blood pressure by improvement of endothelial dysfunction via AMPK-Akt-eNOS-NO pathway in the spontaneously hypertensive rat. J Am Heart Assoc. 2016;5:e003433.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Han F, Zhang S, Hou N, Wang D, Sun X. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am J Physiol Heart Circ Physiol. 2015;309:H1501–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Ye L, Xu M, Hu M, Zhang H, Tan X, Li Q, et al. TRPV4 is involved in irisin-induced endothelium-dependent vasodilation. Biochem Biophys Res Commun. 2018;495:41–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Zhu D, Wang H, Zhang J, Zhang X, Xin C, Zhang F, et al. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J Mol Cell Cardiol. 2015;87:138–47.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Jiang M, Wan F, Wang F, Wu Q. Irisin relaxes mouse mesenteric arteries through endothelium-dependent and endothelium-independent mechanisms. Biochem Biophys Res Commun. 2015;468:832–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Song H, Xu J, Lv N, Zhang Y, Wu F, Li H, et al. Irisin reverses platelet derived growth factor-BB-induced vascular smooth muscle cells phenotype modulation through STAT3 signaling pathway. Biochem Biophys Res Commun. 2016;479:139–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Alis R, Sanchis-Gomar F, Pareja-Galeano H, Hernandez-Mijares A, Romagnoli M, Victor VM, et al. Association between irisin and homocysteine in euglycemic and diabetic subjects. Clin Biochem. 2014;47:333–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev. 2013;93:1317–542.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Sesti G, Andreozzi F, Fiorentino TV, Mannino GC, Sciacqua A, Marini MA, et al. High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol. 2014;51:705–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Lee MJ, Lee SA, Nam BY, Park S, Lee SH, Ryu HJ, et al. Irisin, a novel myokine is an independent predictor for sarcopenia and carotid atherosclerosis in dialysis patients. Atherosclerosis. 2015;242:476–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Saadeldin MK, Elshaer SS, Emara IA, Maged M, Abdel-Aziz AK. Serum sclerostin and irisin as predictive markers for atherosclerosis in Egyptian type II diabetic female patients: a case control study. PLoS One. 2018;13:e206761.

    Article  CAS  Google Scholar 

  40. 40.

    Moreno-Perez O, Reyes-Garcia R, Munoz-Torres M, Merino E, Boix V, Reus S, et al. High irisin levels in nondiabetic HIV-infected males are associated with insulin resistance, nonalcoholic fatty liver disease, and subclinical atherosclerosis. Clin Endocrinol. 2018;89:414–23.

    CAS  Article  Google Scholar 

  41. 41.

    Icli A, Cure E, Cumhur CM, Uslu AU, Balta S, Arslan S, et al. Novel myokine: Irisin may be an independent predictor for subclinic atherosclerosis in Behcet’s disease. J Investig Med. 2016;64:875–81.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Hisamatsu T, Miura K, Arima H, Fujiyoshi A, Kadota A, Kadowaki S, et al. Relationship of serum irisin levels to prevalence and progression of coronary artery calcification: a prospective, population-based study. Int J Cardiol. 2018;267:177–82.

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Tang H, Yu R, Liu S, Huwatibieke B, Li Z, Zhang W. Irisin inhibits hepatic cholesterol synthesis via AMPK-SREBP2 signaling. EBioMedicine 2016;6:139–48.

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Martins IJ, Hone E, Foster JK, Sunram-Lea SI, Gnjec A, Fuller SJ, et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry. 2006;11:721–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Heeren J, Beisiegel U, Grewal T. Apolipoprotein E recycling: implications for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:442–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Fuku N, Diaz-Pena R, Arai Y, Abe Y, Zempo H, Naito H, et al. Epistasis, physical capacity-related genes and exceptional longevity: FNDC5 gene interactions with candidate genes FOXOA3 and APOE. BMC Genom. 2017;18:803.

    Article  CAS  Google Scholar 

  47. 47.

    Song H, Wu F, Zhang Y, Zhang Y, Wang F, Jiang M, et al. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PLoS One. 2014;9:e110273.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Deng X, Huang W, Peng J, Zhu TT, Sun XL, Zhou XY, et al. Irisin alleviates advanced glycation end products-induced inflammation and endothelial dysfunction via inhibiting ROS-NLRP3 inflammasome signaling. Inflammation. 2018;41:260–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Zhu G, Wang J, Song M, Zhou F, Fu D, Ruan G, et al. Irisin increased the number and improved the function of endothelial progenitor cells in diabetes mellitus mice. J Cardiovasc Pharmacol. 2016;68:67–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Zhang Y, Mu Q, Zhou Z, Song H, Zhang Y, Wu F, et al. Protective effect of irisin on atherosclerosis via suppressing oxidized low density lipoprotein induced vascular inflammation and endothelial dysfunction. PLoS One. 2016;11:e158038.

    Google Scholar 

  51. 51.

    Zang YH, Chen D, Zhou B, Chen AD, Wang JJ, Gao XY, et al. FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NF-κB-mediated NLRP3 upregulation. Vasc Pharmacol. 2019;121:106579.

    CAS  Article  Google Scholar 

  52. 52.

    Rana KS, Pararasa C, Afzal I, Nagel DA, Hill EJ, Bailey CJ, et al. Plasma irisin is elevated in type 2 diabetes and is associated with increased E-selectin levels. Cardiovasc Diabetol. 2017;16:147.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Rosenfeld ME, Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1990;10:680–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Flaxman A, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129:1493–501.

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Anastasilakis AD, Koulaxis D, Kefala N, Polyzos SA, Upadhyay J, Pagkalidou E, et al. Circulating irisin levels are lower in patients with either stable coronary artery disease (CAD) or myocardial infarction (MI) versus healthy controls, whereas follistatin and activin A levels are higher and can discriminate MI from CAD with similar to CK-MB accuracy. Metabolism. 2017;73:1–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Emanuele E, Minoretti P, Pareja-Galeano H, Sanchis-Gomar F, Garatachea N, Lucia A. Serum irisin levels, precocious myocardial infarction, and healthy exceptional longevity. Am J Med. 2014;127:888–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Kuloglu T, Aydin S, Eren MN, Yilmaz M, Sahin I, Kalayci M, et al. Irisin: a potentially candidate marker for myocardial infarction. Peptides. 2014;55:85–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Khorasani ZM, Bagheri RK, Yaghoubi MA, Chobkar S, Aghaee MA, Abbaszadegan MR, et al. The association between serum irisin levels and cardiovascular disease in diabetic patients. Diabetes Metab Syndr. 2019;13:786–90.

    PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Aydin S, Catak Z, Eren MN, Topal AE, Aydin S. Irisin in coronary bypass surgery. Cardiovasc Hematol Disord Drug Targets. 2018;18:208–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Aydin S, Aydin S, Kobat MA, Kalayci M, Eren MN, Yilmaz M, et al. Decreased saliva/serum irisin concentrations in the acute myocardial infarction promising for being a new candidate biomarker for diagnosis of this pathology. Peptides. 2014;56:141–5.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Deng W. Association of serum irisin concentrations with presence and severity of coronary artery disease. Med Sci Monit. 2016;22:4193–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Bashar SM, Samir ES, Boraie MZ. Correlation between the blood level of irisin and the severity of acute myocardial infarction in exercise-trained rats. J Basic Clin Physiol Pharmacol. 2018;30:59–71.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  63. 63.

    Abd EN, Galal HM, El MK, Gadallah AI. Serum irisin level in myocardial infarction patients with or without heart failure. Can J Physiol Pharmacol. 2019;97:932–8.

    Article  CAS  Google Scholar 

  64. 64.

    Aronis KN, Moreno M, Polyzos SA, Moreno-Navarrete JM, Ricart W, Delgado E, et al. Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events. Int J Obes. 2015;39:156–61.

    CAS  Article  Google Scholar 

  65. 65.

    Hsieh IC, Ho MY, Wen MS, Chen CC, Hsieh MJ, Lin CP, et al. Serum irisin levels are associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Int J Cardiol. 2018;261:12–7.

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Hu C, Zhang X, Wei WY, Zhang N, Wu HM, Ma ZG, et al. Matrine attenuates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via maintaining AMPKα/UCP2 pathway. Acta Pharm Sin B. 2019;9:690–701.

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Wang Z, Chen K, Han Y, Zhu H, Zhou XY, Tan T, et al. Irisin protects heart against ischemia-reperfusion injury through a SOD2-dependent mitochondria mechanism. J Cardiovasc Pharmacol. 2018;72:259–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Zhao YT, Wang H, Zhang S, Du J, Zhuang S, Zhao TC. Irisin ameliorates hypoxia/reoxygenation-induced injury through modulation of histone deacetylase 4. PLoS One. 2016;11:e166182.

    Google Scholar 

  69. 69.

    Ho MY, Wen MS, Yeh JK, Hsieh IC, Chen CC, Hsieh MJ, et al. Excessive irisin increases oxidative stress and apoptosis in murine heart. Biochem Biophys Res Commun. 2018;503:2493–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Liu FY, Fan D, Yang Z, Tang N, Guo Z, Ma SQ, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Zhao G, Zhang X, Xu P, Mi JY, Rui YJ. The protective effect of Irisin against ischemia-reperfusion injury after perforator flap grafting in rats. Injury. 2018;49:2147–53.

    PubMed  Article  Google Scholar 

  72. 72.

    Sharma S, Mishra R, Bigham GE, Wehman B, Khan MM, Xu H, et al. A deep proteome analysis identifies the complete secretome as the functional unit of human cardiac progenitor cells. Circ Res. 2017;120:816–34.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Zhao YT, Wang J, Yano N, Zhang LX, Wang H, Zhang S, et al. Irisin promotes cardiac progenitor cell-induced myocardial repair and functional improvement in infarcted heart. J Cell Physiol. 2019;234:1671–81.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Agh F, Mohammadzadeh HN, Djalali M, Nematipour E, Gholamhoseini S, Zarei M, et al. Omega-3 fatty acid could increase one of myokines in male patients with coronary artery disease: a randomized, double-blind, placebo-controlled trial. Arch Iran Med. 2017;20:28–33.

    PubMed  Google Scholar 

  75. 75.

    Aydin S, Kuloglu T, Aydin S, Yardim M, Azboy D, Temizturk Z, et al. The effect of iloprost and sildenafil, alone and in combination, on myocardial ischaemia and nitric oxide and irisin levels. Cardiovasc J Afr. 2017;28:389–96.

    PubMed  Article  Google Scholar 

  76. 76.

    Herring N, Kalla M, Paterson DJ. The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol. 2019;16:707–26.

    PubMed  Article  Google Scholar 

  77. 77.

    Sundarrajan L, Yeung C, Hahn L, Weber LP, Unniappan S. Irisin regulates cardiac physiology in zebrafish. PLoS One. 2017;12:e181461.

    Article  CAS  Google Scholar 

  78. 78.

    Xie C, Zhang Y, Tran TD, Wang H, Li S, George EV, et al. Irisin controls growth, intracellular Ca2+ signals, and mitochondrial thermogenesis in cardiomyoblasts. PLoS One. 2015;10:e136816.

    Google Scholar 

  79. 79.

    Brailoiu E, Deliu E, Sporici RA, Brailoiu GC. Irisin evokes bradycardia by activating cardiac-projecting neurons of nucleus ambiguus. Physiol Rep. 2015;3:e12419.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy. Cardiovasc Res. 2017;113:389–98.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Ma ZG, Yuan YP, Xu SC, Wei WY, Xu CR, Zhang X, et al. CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats. Diabetologia. 2017;60:1126–37.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Ma ZG, Kong CY, Song P, Zhang X, Yuan YP, Tang QZ. Geniposide protects against obesity-related cardiac injury through AMPKalpha- and Sirt1-dependent mechanisms. Oxid Med Cell Longev. 2018;2018:6053727.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Zhang N, Yang Z, Xiang SZ, Jin YG, Wei WY, Bian ZY, et al. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem. 2016;417:87–96.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Stratigou T, Dalamaga M, Antonakos G, Marinou I, Vogiatzakis E, Christodoulatos GS, et al. Hyperirisinemia is independently associated with subclinical hypothyroidism: correlations with cardiometabolic biomarkers and risk factors. Endocrine. 2018;61:83–93.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Geng Z, Fan WY, Zhou B, Ye C, Tong Y, Zhou YB, et al. FNDC5 attenuates obesity-induced cardiac hypertrophy by inactivating JAK2/STAT3-associated inflammation and oxidative stress. J Transl Med. 2019;17:107.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Moscoso I, Cebro-Marquez M, Rodriguez-Manero M, Gonzalez-Juanatey JR, Lage R. FNDC5/Irisin counteracts lipotoxic-induced apoptosis in hypoxic H9c2 cells. J Mol Endocrinol. 2019;63:151–9.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci. 2018;14:1645–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Liu Y, Hu ZF, Liao HH, Liu W, Liu J, Ma ZG, et al. Toll-like receptor 5 deficiency attenuates interstitial cardiac fibrosis and dysfunction induced by pressure overload by inhibiting inflammation and the endothelial-mesenchymal transition. Biochim Biophys Acta. 2015;1852:2456–66.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Jin YG, Yuan Y, Wu QQ, Zhang N, Fan D, Che Y, et al. Puerarin protects against cardiac fibrosis associated with the inhibition of TGF-β1/Smad2-mediated endothelial-to-mesenchymal transition. PPAR Res. 2017;2017:2647129.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90.

    Liu X, Mujahid H, Rong B, Lu QH, Zhang W, Li P, et al. Irisin inhibits high glucose-induced endothelial-to-mesenchymal transition and exerts a dose-dependent bidirectional effect on diabetic cardiomyopathy. J Cell Mol Med. 2018;22:808–22.

    CAS  PubMed  Google Scholar 

  91. 91.

    Xiao Y, Wu QQ, Duan MX, Liu C, Yuan Y, Yang Z, et al. TAX1BP1 overexpression attenuates cardiac dysfunction and remodeling in STZ-induced diabetic cardiomyopathy in mice by regulating autophagy. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1728–43.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Wu QQ, Liu C, Cai ZL, Xie QW, Hu TT, Duan MX, et al. High-mobility group AT-hook 1 promotes cardiac dysfunction in diabetic cardiomyopathy via autophagy inhibition. Cell Death Dis. 2020;11:160.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Gonzalez N, Moreno-Villegas Z, Gonzalez-Bris A, Egido J, Lorenzo O. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol. 2017;16:44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Park HE, Choi SY, Kim M. Association of epicardial fat with left ventricular diastolic function in subjects with metabolic syndrome: assessment using 2-dimensional echocardiography. BMC Cardiovasc Disord. 2014;14:3.

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Ng A, Strudwick M, van der Geest RJ, Ng A, Gillinder L, Goo SY, et al. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ Cardiovasc Imaging. 2018;11:e7372.

    Article  Google Scholar 

  96. 96.

    Sahin M, Canpolat AG, Corapcioglu D, Canpolat U, Emral R, Uysal AR. Association between circulating irisin levels and epicardial fat in patients with treatment-naive overt hyperthyroidism. Biomarkers. 2018;23:742–7.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Kaneda H, Nakajima T, Haruyama A, Shibasaki I, Hasegawa T, Sawaguchi T, et al. Association of serum concentrations of irisin and the adipokines adiponectin and leptin with epicardial fat in cardiovascular surgery patients. PLoS One. 2018;13:e201499.

    Article  CAS  Google Scholar 

  98. 98.

    Wu QQ, Xiao Y, Yuan Y, Ma ZG, Liao HH, Liu C, et al. Mechanisms contributing to cardiac remodelling. Clin Sci. 2017;131:2319–45.

    CAS  Article  Google Scholar 

  99. 99.

    Ma ZG, Yuan YP, Zhang X, Xu SC, Kong CY, Song P, et al. C1q-tumour necrosis factor-related protein-3 exacerbates cardiac hypertrophy in mice. Cardiovasc Res. 2019;115:1067–77.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Ma ZG, Dai J, Yuan YP, Bian ZY, Xu SC, Jin YG, et al. T-bet deficiency attenuates cardiac remodelling in rats. Basic Res Cardiol. 2018;113:19.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  101. 101.

    Ma ZG, Zhang X, Yuan YP, Jin YG, Li N, Kong CY, et al. A77 1726 (leflunomide) blocks and reverses cardiac hypertrophy and fibrosis in mice. Clin Sci. 2018;132:685–99.

    CAS  Article  Google Scholar 

  102. 102.

    Yuan Y, Yan L, Wu QQ, Zhou H, Jin YG, Bian ZY, et al. Mnk1 (Mitogen-activated protein kinase-interacting kinase 1) deficiency aggravates cardiac remodeling in mice. Hypertension. 2016;68:1393–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Zhang X, Hu C, Zhang N, Wei WY, Li LL, Wu HM, et al. Matrine attenuates pathological cardiac fibrosis via RPS5/p38 in mice. Acta Pharmacol Sin. 2020;41: in press. https://doi.org/10.1038/s41401-020-0473-8.

  104. 104.

    Chen RR, Fan XH, Chen G, Zeng GW, Xue YG, Liu XT, et al. Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/TGF-β1/Smad2/3 signaling axis. Chem Biol Interact. 2019;302:11–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Yan L, Wei X, Tang QZ, Feng J, Zhang Y, Liu C, et al. Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGF-β1-Smad signalling. Cardiovasc Res. 2011;92:85–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Zhang X, Ma ZG, Yuan YP, Xu SC, Wei WY, Song P, et al. Rosmarinic acid attenuates cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling. Cell Death Dis. 2018;9:102.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Tiano JP, Springer DA, Rane SG. SMAD3 negatively regulates serum irisin and skeletal muscle FNDC5 and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) during exercise. J Biol Chem. 2015;290:7671–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Guo Q, Wei XJ, Hu HL, Yang DQ, Zhang BY, Fan XP, et al. The saturated fatty acid palmitate induces insulin resistance through Smad3-mediated down-regulation of FNDC5 in myotubes. Biochem Biophys Res Commun. 2019;520:619–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Yu Q, Kou W, Xu X, Zhou S, Luan P, Xu X, et al. FNDC5/Irisin inhibits pathological cardiac hypertrophy. Clin Sci. 2019;133:611–27.

    CAS  Article  Google Scholar 

  110. 110.

    Hao G, Wang X, Chen Z, Zhang LF, Zhang YH, Wei BQ, et al. Prevalence of heart failure and left ventricular dysfunction in China: the China Hypertension Survey, 2012-2015. Eur J Heart Fail. 2019;21:1329–37.

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Silvestrini A, Bruno C, Vergani E, Venuti A, Favuzzi A, Guidi F, et al. Circulating irisin levels in heart failure with preserved or reduced ejection fraction: a pilot study. PLoS One. 2019;14:e210320.

    Article  CAS  Google Scholar 

  112. 112.

    Matsuo Y, Gleitsmann K, Mangner N, Werner S, Fischer T, Bowen TS, et al. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J Cachexia Sarcopenia Muscle. 2015;6:62–72.

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Zhou SJ, Han QF, Zhang AH, Tang W, Sun LH. Irisin and volume overload are associated with protein energy wasting in peritoneal dialysis patients. Kidney Blood Press Res. 2017;42:1216–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Kalkan AK, Cakmak HA, Erturk M, Kalkan KE, Uzun F, Tasbulak O, et al. Adropin and irisin in patients with cardiac cachexia. Arq Bras Cardiol. 2018;111:39–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Shen S, Gao R, Bei Y, Li J, Zhang H, Zhou Y, et al. Serum irisin predicts mortality risk in acute heart failure patients. Cell Physiol Biochem. 2017;42:615–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Lecker SH, Zavin A, Cao P, Arena R, Allsup K, Daniels KM, et al. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circ Heart Fail. 2012;5:812–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Wallace KB, Sardao VA, Oliveira PJ. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ Res. 2020;126:926–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Yuan YP, Ma ZG, Zhang X, Xu SC, Zeng XF, Yang Z, et al. CTRP3 protected against doxorubicin-induced cardiac dysfunction, inflammation and cell death via activation of Sirt1. J Mol Cell Cardiol. 2018;114:38–47.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Zhang X, Zhu JX, Ma ZG, Wu HM, Xu SC, Song P, et al. Rosmarinic acid alleviates cardiomyocyte apoptosis via cardiac fibroblast in doxorubicin-induced cardiotoxicity. Int J Biol Sci. 2019;15:556–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Hu C, Zhang X, Zhang N, Wei WY, Li LL, Ma ZG, et al. Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clin Transl Med. 2020;10:e124.

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Hu C, Zhang X, Song P, Yuan YP, Kong CY, Wu HM, et al. Meteorin-like protein attenuates doxorubicin-induced cardiotoxicity via activating cAMP/PKA/SIRT1 pathway. Redox Biol. 2020;37:101747.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Aydin S, Eren MN, Kuloglu T, Aydin S, Yilmaz M, Gul E, et al. Alteration of serum and cardiac tissue adropin, copeptin, irisin and TRPM2 expressions in DOX treated male rats. Biotech Histochem. 2015;90:197–205.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Merx MW, Weber C. Sepsis and the heart. Circulation. 2007;116:793–802.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Song P, Shen DF, Meng YY, Kong CY, Zhang X, Yuan YP, et al. Geniposide protects against sepsis-induced myocardial dysfunction through AMPKα-dependent pathway. Free Radic Biol Med. 2020;152:186–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Li N, Zhou H, Wu HM, Wu QQ, Duan MX, Deng W, et al. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol. 2019;24:101215.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Wei WY, Ma ZG, Zhang N, Xu SC, Yuan YP, Zeng XF, et al. Overexpression of CTRP3 protects against sepsis-induced myocardial dysfunction in mice. Mol Cell Endocrinol. 2018;476:27–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Tan Y, Ouyang HC, Xiao XC, Zhong JK, Dong ML. Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway. Cell Stress Chaperones. 2019;24:595–608.

    PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Bonfante I, Chacon-Mikahil M, Brunelli DT, Gaspari AF, Duft RG, Oliveira AG, et al. Obese with higher FNDC5/Irisin levels have a better metabolic profile, lower lipopolysaccharide levels and type 2 diabetes risk. Arch Endocrinol Metab. 2017;61:524–33.

    PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Kaluzna M, Pawlaczyk K, Schwermer K, Hoppe K, Czlapka-Matyasik M, Ibrahim AY, et al. Adropin and irisin: new biomarkers of cardiac status in patients with end-stage renal disease? A preliminary study. Adv Clin Exp Med. 2019;28:347–53.

    PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Hu C, Jia WP. Therapeutic medications against diabetes: what we have and what we expect. Adv Drug Deliv Rev. 2019;139:3–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Hu WC, Wang R, Li J, Zhang J, Wang WH. Association of irisin concentrations with the presence of diabetic nephropathy and retinopathy. Ann Clin Biochem. 2016;53:67–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Li BX, Yao Q, Guo SQ, Ma S, Dong YH, Xin HH, et al. Type 2 diabetes with hypertensive patients results in changes to features of adipocytokines: Leptin, Irisin, LGR4, and Sfrp5. Clin Exp Hypertens. 2019;41:645–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Duran ID, Gulcelik NE, Unal M, Topcuoglu C, Sezer S, Tuna MM, et al. Irisin levels in the progression of diabetes in sedentary women. Clin Biochem. 2015;48:1268–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Wang LS, Song J, Wang C, Lin P, Liang K, Sun Y, et al. Circulating levels of betatrophin and irisin are not associated with pancreatic β-cell function in previously diagnosed type 2 diabetes mellitus patients. J Diabetes Res. 2016;2016:2616539.

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Choi YK, Kim MK, Bae KH, Seo HA, Jeong JY, Lee WK, et al. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pr. 2013;100:96–101.

    CAS  Article  Google Scholar 

  136. 136.

    Guilford BL, Parson JC, Grote CW, Vick SN, Ryals JM, Wright DE. Increased FNDC5 is associated with insulin resistance in high fat-fed mice. Physiol Rep. 2017;5:e13319.

  137. 137.

    Al-Daghri NM, Mohammed AK, Al-Attas OS, Amer OE, Clerici M, Alenad A, et al. SNPs in FNDC5 (irisin) are associated with obesity and modulation of glucose and lipid metabolism in Saudi subjects. Lipids Health Dis. 2016;15:54.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  138. 138.

    Garcia-Fontana B, Reyes-Garcia R, Morales-Santana S, Avila-Rubio V, Munoz-Garach A, Rozas-Moreno P, et al. Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state? Endocrine. 2016;52:54–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Espes D, Lau J, Carlsson PO. Increased levels of irisin in people with long-standing type 1 diabetes. Diabet Med. 2015;32:1172–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Faienza MF, Brunetti G, Sanesi L, Colaianni G, Celi M, Piacente L, et al. High irisin levels are associated with better glycemic control and bone health in children with type 1 diabetes. Diabetes Res Clin Pr. 2018;141:10–7.

    CAS  Article  Google Scholar 

  141. 141.

    Ates I, Arikan MF, Erdogan K, Kaplan M, Yuksel M, Topcuoglu C, et al. Factors associated with increased irisin levels in the type 1 diabetes mellitus. Endocr Regul. 2017;51:1–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Sanchis-Gomar F, Alis R, Pareja-Galeano H, Sola E, Victor VM, Rocha M, et al. Circulating irisin levels are not correlated with BMI, age, and other biological parameters in obese and diabetic patients. Endocrine. 2014;46:674–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Adamska A, Karczewska-Kupczewska M, Lebkowska A, Milewski R, Gorska M, Otziomek E, et al. Serum irisin and its regulation by hyperinsulinemia in women with polycystic ovary syndrome. Endocr J. 2016;63:1107–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Liu BW, Yin FZ, Qi XM, Fan DM, Zhang Y. The levels of serum irisin as a predictor of insulin resistance in Han Chinese adults with metabolically healthy obesity. Clin Lab. 2017;63:881–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Belviranli M, Okudan N, Celik F. Association of circulating irisin with insulin resistance and oxidative stress in obese women. Horm Metab Res. 2016;48:653–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Zhang D, Xie T, Leung PS. Irisin ameliorates glucolipotoxicity-associated β-cell dysfunction and apoptosis via AMPK signaling and anti-inflammatory actions. Cell Physiol Biochem. 2018;51:924–37.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Duan HK, Ma BC, Ma XF, Wang HS, Ni ZZ, Wang B, et al. Anti-diabetic activity of recombinant irisin in STZ-induced insulin-deficient diabetic mice. Int J Biol Macromol. 2016;84:457–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Yang ML, Chen PH, Jin H, Xie XM, Gao T, Yang LL, et al. Circulating levels of irisin in middle-aged first-degree relatives of type 2 diabetes mellitus-correlation with pancreatic β-cell function. Diabetol Metab Syndr. 2014;6:133.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  149. 149.

    Pang YL, Zhu HH, Xu JQ, Yang LH, Liu LJ, Li J. β-arrestin-2 is involved in irisin induced glucose metabolism in type 2 diabetes via p38 MAPK signaling. Exp Cell Res. 2017;360:199–204.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Huh JY, Mougios V, Kabasakalis A, Fatouros I, Siopi A, Douroudos II. et al. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocrinol Metab. 2014;99:E2154–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes. 2014;38:1538–44.

    CAS  Article  Google Scholar 

  152. 152.

    Lee HJ, Lee JO, Kim N, Kim JK, Kim HI, Lee YW, et al. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol Endocrinol. 2015;29:873–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Xin C, Liu JY, Zhang JL, Zhu D, Wang HC, Xiong LZ, et al. Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int J Obes. 2016;40:443–51.

    CAS  Article  Google Scholar 

  154. 154.

    Zhang DD, Bae C, Lee J, Lee J, Jin ZY, Kang M, et al. The bone anabolic effects of irisin are through preferential stimulation of aerobic glycolysis. Bone. 2018;114:150–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L, et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci. 2015;129:839–50.

    CAS  Article  Google Scholar 

  156. 156.

    Sanchis-Gomar F, Perez-Quilis C. The p38-PGC-1α-irisin-betatrophin axis: exploring new pathways in insulin resistance. Adipocyte. 2014;3:67–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Gutierrez-Repiso C, Garcia-Serrano S, Rodriguez-Pacheco F, Garcia-Escobar E, Haro-Mora JJ, Garcia-Arnes J, et al. FNDC5 could be regulated by leptin in adipose tissue. Eur J Clin Invest. 2014;44:918–25.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  158. 158.

    Cui LL, Qiao TY, Xu F, Li ZL, Chen TT, Su HL, et al. Circulating irisin levels of prenatal and postnatal patients with gestational diabetes mellitus: a systematic review and meta-analysis. Cytokine. 2020;126:154924.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159.

    Ebert T, Stepan H, Schrey S, Kralisch S, Hindricks J, Hopf L, et al. Serum levels of irisin in gestational diabetes mellitus during pregnancy and after delivery. Cytokine. 2014;65:153–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160.

    Aydin S, Kuloglu T, Aydin S. Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus. Peptides. 2013;47:66–70.

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Yuksel MA, Oncul M, Tuten A, Imamoglu M, Acikgoz AS, Kucur M, et al. Maternal serum and fetal cord blood irisin levels in gestational diabetes mellitus. Diabetes Res Clin Pr. 2014;104:171–5.

    CAS  Article  Google Scholar 

  162. 162.

    Zhao L, Li J, Li ZL, Yang J, Li ML, Wang GL. Circulating irisin is lower in gestational diabetes mellitus. Endocr J. 2015;62:921–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Kuzmicki M, Telejko B, Lipinska D, Pliszka J, Szamatowicz M, Wilk J, et al. Serum irisin concentration in women with gestational diabetes. Gynecol Endocrinol. 2014;30:636–9.

    CAS  PubMed  Article  Google Scholar 

  164. 164.

    Briana DD, Boutsikou M, Athanasopoulos N, Marmarinos A, Gourgiotis D, Malamitsi-Puchner A. Implication of the myokine irisin in maternal energy homeostasis in pregnancies with abnormal fetal growth. J Matern Fetal Neonatal Med. 2016;29:3429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Garces MF, Peralta JJ, Ruiz-Linares CE, Lozano AR, Poveda NE, Torres-Sierra AL, et al. Irisin levels during pregnancy and changes associated with the development of preeclampsia. J Clin Endocrinol Metab. 2014;99:2113–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166.

    Wang P, Ma HH, Hou XZ, Song LL, Song XL, Zhang JF. Reduced plasma level of irisin in first trimester as a risk factor for the development of gestational diabetes mellitus. Diabetes Res Clin Pr. 2018;142:130–8.

    CAS  Article  Google Scholar 

  167. 167.

    Erol O, Erkal N, Ellidag HY, Isenlik BS, Aydin O, Derbent AU, et al. Irisin as an early marker for predicting gestational diabetes mellitus: a prospective study. J Matern Fetal Neonatal Med. 2016;29:3590–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. 168.

    Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14:270–84.

    PubMed  Article  PubMed Central  Google Scholar 

  169. 169.

    Chang CL, Huang SY, Soong YK, Cheng PJ, Wang CJ, Liang IT. Circulating irisin and glucose-dependent insulinotropic peptide are associated with the development of polycystic ovary syndrome. J Clin Endocrinol Metab. 2014;99:E2539–48.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  170. 170.

    Li H, Xu X, Wang X, Liao X, Li L, Yang G, et al. Free androgen index and Irisin in polycystic ovary syndrome. J Endocrinol Invest. 2016;39:549–56.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  171. 171.

    Bostanci MS, Akdemir N, Cinemre B, Cevrioglu AS, Ozden S, Unal O. Serum irisin levels in patients with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2015;19:4462–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Bacopoulou F, Athanasopoulos N, Efthymiou V, Mantzou A, Aravantinos L, Vlahopoulos S, et al. Serum irisin concentrations in lean adolescents with polycystic ovary syndrome. Clin Endocrinol. 2018;88:585–91.

    CAS  Article  Google Scholar 

  173. 173.

    Li MY, Yang ML, Zhou XX, Fang X, Hu WJ, Zhu W, et al. Elevated circulating levels of irisin and the effect of metformin treatment in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2015;100:1485–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174.

    Abali R, Temel YI, Yuksel MA, Bulut B, Imamoglu M, Emirdar V, et al. Implications of circulating irisin and Fabp4 levels in patients with polycystic ovary syndrome. J Obstet Gynaecol. 2016;36:897–901.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175.

    Wang W, Guo Y, Zhang XX, Zheng JH. Abnormal irisin level in serum and endometrium is associated with metabolic dysfunction in polycystic ovary syndrome patients. Clin Endocrinol. 2018;89:474–80.

    CAS  Article  Google Scholar 

  176. 176.

    Bakhshalizadeh S, Rabiee F, Shirazi R, Ghaedi K, Amidi F, Nasr-Esfahani MH. Assessment of PGC1α-FNDC5 axis in granulosa cells of PCOS mouse model. J Reprod Infertil. 2018;19:89–94.

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Pukajlo K, Laczmanski L, Kolackov K, Kuliczkowska-Plaksej J, Bolanowski M, Milewicz A, et al. Irisin plasma concentration in PCOS and healthy subjects is related to body fat content and android fat distribution. Gynecol Endocrinol. 2015;31:907–11.

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Li C, Zhou L, Xie Y, Guan C, Gao H. Effect of irisin on endometrial receptivity of rats with polycystic ovary syndrome. Gynecol Endocrinol. 2019;35:395–400.

    CAS  PubMed  Article  Google Scholar 

  179. 179.

    Gao S, Cheng Y, Zhao L, Chen Y, Liu Y. The relationships of irisin with bone mineral density and body composition in PCOS patients. Diabetes Metab Res Rev. 2016;32:421–8.

    CAS  PubMed  Article  Google Scholar 

  180. 180.

    Khidr EG, Ali SS, Elshafey MM, Fawzy OA. Association of irisin and FNDC5 rs16835198 G>T gene polymorphism with type 2 diabetes mellitus and diabetic nephropathy. An Egyptian pilot study. Gene. 2017;626:26–31.

    CAS  PubMed  Article  Google Scholar 

  181. 181.

    Staiger H, Bohm A, Scheler M, Berti L, Machann J, Schick F, et al. Common genetic variation in the human FNDC5 locus, encoding the novel muscle-derived ‘browning’ factor irisin, determines insulin sensitivity. PLoS One. 2013;8:e61903.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Tanisawa K, Taniguchi H, Sun X, Ito T, Cao ZB, Sakamoto S, et al. Common single nucleotide polymorphisms in the FNDC5 gene are associated with glucose metabolism but do not affect serum irisin levels in Japanese men with low fitness levels. Metabolism. 2014;63:574–83.

    CAS  PubMed  Article  Google Scholar 

  183. 183.

    Tang SS, Zhang R, Jiang F, Wang J, Chen M, Peng DF, et al. An interaction between a FNDC5 variant and obesity modulates glucose metabolism in a Chinese Han population. PLoS One. 2014;9:e109957.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  184. 184.

    Ebert T, Kralisch S, Wurst U, Scholz M, Stumvoll M, Kovacs P, et al. Association of metabolic parameters and rs726344 in FNDC5 with serum irisin concentrations. Int J Obes. 2016;40:260–5.

    CAS  Article  Google Scholar 

  185. 185.

    Tang SS, Zhang R, Jiang F, Wang J, Chen M, Peng DF, et al. Association between FNDC5 genetic variants and proliferative diabetic retinopathy in a Chinese population. Clin Exp Pharmacol Physiol. 2016;43:580–2.

    CAS  PubMed  Article  Google Scholar 

  186. 186.

    Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. Physiol Rev. 2019;99:1701–63.

    CAS  PubMed  Article  Google Scholar 

  187. 187.

    Aydin S, Kuloglu T, Aydin S, Kalayci M, Yilmaz M, Cakmak T, et al. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides. 2014;61:130–6.

    CAS  PubMed  Article  Google Scholar 

  188. 188.

    Gouda W, Mageed L, Shaker Y, Hamimy WI, Afify M. Assessment of serum vitamin D and irisin levels in obese patients. Clin Lab. 2018;64:180416.

    Article  Google Scholar 

  189. 189.

    Bensmaine F, Benomar K, Espiard S, Vahe C, Le Mapihan K, Lion G, et al. Irisin levels in LMNA-associated partial lipodystrophies. Diabetes Metab. 2019;45:67–75.

    CAS  PubMed  Article  Google Scholar 

  190. 190.

    Kazeminasab F, Marandi SM, Ghaedi K, Safaeinejad Z, Esfarjani F, Nasr-Esfahani MH. A comparative study on the effects of high-fat diet and endurance training on the PGC-1α-FNDC5/Irisin pathway in obese and nonobese male C57BL/6 mice. Appl Physiol Nutr Metab. 2018;43:651–62.

    CAS  PubMed  Article  Google Scholar 

  191. 191.

    Elizondo-Montemayor L, Silva-Platas C, Torres-Quintanilla A, Rodriguez-Lopez C, Ruiz-Esparza GU, Reyes-Mendoza E, et al. Association of irisin plasma levels with anthropometric parameters in children with underweight, normal weight, overweight, and obesity. Biomed Res Int. 2017;2017:2628968.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  192. 192.

    Binay C, Paketci C, Guzel S, Samanci N. Serum irisin and oxytocin levels as predictors of metabolic parameters in obese children. J Clin Res Pediatr Endocrinol. 2017;9:124–31.

    PubMed  PubMed Central  Article  Google Scholar 

  193. 193.

    Varela-Rodriguez BM, Pena-Bello L, Juiz-Valina P, Vidal-Bretal B, Cordido F, Sangiao-Alvarellos S. FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle. Sci Rep. 2016;6:29898.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. 194.

    Perez-Sotelo D, Roca-Rivada A, Baamonde I, Baltar J, Castro AI, Dominguez E, et al. Lack of adipocyte-Fndc5/Irisin expression and secretion reduces thermogenesis and enhances adipogenesis. Sci Rep. 2017;7:16289.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  195. 195.

    Gao S, Li F, Li H, Huang Y, Liu Y, Chen Y. Effects and molecular mechanism of GST-irisin on lipolysis and autocrine function in 3T3-L1 adipocytes. PLoS One. 2016;11:e147480.

    Google Scholar 

  196. 196.

    Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013;98:E769–78.

    CAS  PubMed  Article  Google Scholar 

  197. 197.

    Barja-Fernandez S, Folgueira C, Castelao C, Al-Massadi O, Bravo SB, Garcia-Caballero T, et al. FNDC5 is produced in the stomach and associated to body composition. Sci Rep. 2016;6:23067.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  198. 198.

    Zhao ZM, Yao MM, Wei L, Ge SJ. Obesity caused by a high-fat diet regulates the Sirt1/PGC-1α/FNDC5/BDNF pathway to exacerbate isoflurane-induced postoperative cognitive dysfunction in older mice. Nutr Neurosci. 2019;1–12. https://doi.org/10.1080/1028415X.2019.1581460.

  199. 199.

    Yan B, Shi XL, Zhang HJ, Pan LL, Ma ZM, Liu SH, et al. Association of serum irisin with metabolic syndrome in obese Chinese adults. PLoS One. 2014;9:e94235.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  200. 200.

    Leung W, Yu AP, Lai C, Siu PM. Association of markers of proinflammatory phenotype and beige adipogenesis with metabolic syndrome in Chinese centrally obese adults. J Diabetes Res. 2018;2018:8956509.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  201. 201.

    Jang HB, Kim HJ, Kang JH, Park SI, Park KH, Lee HJ. Association of circulating irisin levels with metabolic and metabolite profiles of Korean adolescents. Metabolism. 2017;73:100–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  202. 202.

    Eslampour E, Ebrahimzadeh F, Abbasnezhad A, Khosroshahi MZ, Choghakhori R, Asbaghi O. Association between circulating irisin and C-reactive protein levels: a systematic review and meta-analysis. Endocrinol Metab. 2019;34:140–9.

    CAS  Article  Google Scholar 

  203. 203.

    Palacios-Gonzalez B, Vadillo-Ortega F, Polo-Oteyza E, Sanchez T, Ancira-Moreno M, Romero-Hidalgo S, et al. Irisin levels before and after physical activity among school-age children with different BMI: a direct relation with leptin. Obesity. 2015;23:729–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  204. 204.

    Panagiotou G, Mu L, Na B, Mukamal KJ, Mantzoros CS. Circulating irisin, omentin-1, and lipoprotein subparticles in adults at higher cardiovascular risk. Metabolism. 2014;63:1265–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  205. 205.

    Xiong Y, Wu ZH, Zhang B, Wang C, Mao FY, Liu X, et al. Fndc5 loss-of-function attenuates exercise-induced browning of white adipose tissue in mice. FASEB J. 2019;33:5876–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  206. 206.

    Canivet CM, Bonnafous S, Rousseau D, Leclere PS, Lacas-Gervais S, Patouraux S, et al. Hepatic FNDC5 is a potential local protective factor against non-alcoholic fatty liver. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165705.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  207. 207.

    Zhang HJ, Zhang XF, Ma ZM, Pan LL, Chen Z, Han HW, et al. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J Hepatol. 2013;59:557–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  208. 208.

    Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, et al. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab. 2016;311:E530–41.

    PubMed  Article  PubMed Central  Google Scholar 

  209. 209.

    Li H, Shen J, Wu T, Kuang JY, Liu QH, Cheng SH, et al. Irisin is controlled by farnesoid X receptor and regulates cholesterol homeostasis. Front Pharmacol. 2019;10:548.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  210. 210.

    Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19:302–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  211. 211.

    Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63:514–25.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  212. 212.

    Xiong XQ, Geng Z, Zhou B, Zhang F, Han Y, Zhou YB, et al. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism. 2018;83:31–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  213. 213.

    Xing T, Kang Y, Xu X, Wang B, Du M, Zhu MJ. Raspberry supplementation improves insulin signaling and promotes brown-like adipocyte development in white adipose tissue of obese mice. Mol Nutr Food Res. 2018;62:1701035.

    Article  CAS  Google Scholar 

  214. 214.

    Mazur-Bialy AI, Bilski J, Pochec E, Brzozowski T. New insight into the direct anti-inflammatory activity of a myokine irisin against proinflammatory activation of adipocytes. J Physiol Pharmacol. 2017;68:243–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Ferrante C, Orlando G, Recinella L, Leone S, Chiavaroli A, Di Nisio C, et al. Central inhibitory effects on feeding induced by the adipo-myokine irisin. Eur J Pharmacol. 2016;791:389–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  216. 216.

    Butt ZD, Hackett JD, Volkoff H. Irisin in goldfish (Carassius auratus): effects of irisin injections on feeding behavior and expression of appetite regulators, uncoupling proteins and lipoprotein lipase, and fasting-induced changes in FNDC5 expression. Peptides. 2017;90:27–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  217. 217.

    Schlogl M, Piaggi P, Votruba SB, Walter M, Krakoff J, Thearle MS. Increased 24-hour ad libitum food intake is associated with lower plasma irisin concentrations the following morning in adult humans. Appetite. 2015;90:154–9.

    PubMed  PubMed Central  Article  Google Scholar 

  218. 218.

    Todendi PF, Klinger EI, Geraldo A, Brixner L, Reuter CP, Lindenau J, et al. Genetic risk score based on fat mass and obesity-associated, transmembrane protein 18 and fibronectin type III domain containing 5 polymorphisms is associated with anthropometric characteristics in South Brazilian children and adolescents. Br J Nutr. 2019;121:93–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  219. 219.

    Abdu AA, Hammoudah SA, Abd EGE, El-Attar LM, Shehab-Eldin WA. Obesity and its association with irisin level among individuals with FNDC5/Irisin gene variants RS16835198 and RS726344. Protein Pept Lett. 2018;25:560–9.

    Article  CAS  Google Scholar 

  220. 220.

    Petta S, Valenti L, Svegliati-Baroni G, Ruscica M, Pipitone RM, Dongiovanni P, et al. Fibronectin type III domain-containing protein 5 rs3480 A>G polymorphism, irisin, and liver fibrosis in patients with nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2017;102:2660–9.

    PubMed  Article  PubMed Central  Google Scholar 

  221. 221.

    Metwally M, Bayoumi A, Romero-Gomez M, Thabet K, John M, Adams LA, et al. A polymorphism in the irisin-encoding gene (FNDC5) associates with hepatic steatosis by differential miRNA binding to the 3’UTR. J Hepatol. 2019;70:494–500.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  222. 222.

    Shirvani H, Rahmati-Ahmadabad S. Irisin interaction with adipose tissue secretions by exercise training and flaxseed oil supplement. Lipids Health Dis. 2019;18:15.

    PubMed  PubMed Central  Article  Google Scholar 

  223. 223.

    Bluher S, Panagiotou G, Petroff D, Markert J, Wagner A, Klemm T, et al. Effects of a 1-year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity. 2014;22:1701–8.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  224. 224.

    Lu Y, Li H, Shen SW, Shen ZH, Xu M, Yang CJ, et al. Swimming exercise increases serum irisin level and reduces body fat mass in high-fat-diet fed Wistar rats. Lipids Health Dis. 2016;15:93.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  225. 225.

    Tine KN, Rosalyn SI, Nafi’Ah R. The effects of exercise regimens on irisin levels in obese rats model: comparing high-intensity intermittent with continuous moderate-intensity training. Biomed Res Int. 2018;2018:4708287.

    Google Scholar 

  226. 226.

    Kang YS, Kim JC, Kim JS, Kim SH. Effects of swimming exercise on serum irisin and bone FNDC5 in rat models of high-fat diet-induced osteoporosis. J Sports Sci Med. 2019;18:596–603.

    PubMed  PubMed Central  Google Scholar 

  227. 227.

    Sajoux I, Lorenzo PM, Gomez-Arbelaez D, Zulet MA, Abete I, Castro AI, et al. Effect of a very-low-calorie ketogenic diet on circulating myokine levels compared with the effect of bariatric surgery or a low-calorie diet in patients with obesity. Nutrients. 2019;11:2368.

    CAS  PubMed Central  Article  Google Scholar 

  228. 228.

    Crujeiras AB, Pardo M, Arturo RR, Navas-Carretero S, Zulet MA, Martinez JA, et al. Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am J Hum Biol. 2014;26:198–207.

    PubMed  Article  PubMed Central  Google Scholar 

  229. 229.

    de la Iglesia R, Lopez-Legarrea P, Crujeiras AB, Pardo M, Casanueva FF, Zulet MA, et al. Plasma irisin depletion under energy restriction is associated with improvements in lipid profile in metabolic syndrome patients. Clin Endocrinol 2014;81:306–11.

    Article  CAS  Google Scholar 

  230. 230.

    Andrade J, Barcala-Jorge AS, Batista-Jorge GC, Paraiso AF, Freitas KM, Lelis DF, et al. Effect of resveratrol on expression of genes involved thermogenesis in mice and humans. Biomed Pharmacother. 2019;112:108634.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  231. 231.

    Kumar S, Hossain J, Inge T, Balagopal PB. Changes in myokines in youths with severe obesity following Roux-en-Y gastric bypass surgery. JAMA Surg. 2019;154:668–9.

    PubMed  Article  PubMed Central  Google Scholar 

  232. 232.

    Lee YJ, Heo Y, Choi JH, Park S, Kim KK, Shin DW, et al. Association of circulating irisin concentrations with weight loss after Roux-en-Y gastric bypass surgery. Int J Environ Res Public Health. 2019;16:660.

    CAS  PubMed Central  Article  Google Scholar 

  233. 233.

    Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61:1725–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No.: 81470516 and 81700254), Key Project of the National Natural Science Foundation (No. 81530012), National Key R&D Program of China (2018YFC1311300), Fundamental Research Funds for the Central Universities (No. 2042017kf0085 and 2042018kf1032), and Development Center for Medical Science and Technology National Health and Family Planning Commission of the People’s Republic of China (The Prevention and Control Project of Cardiovascular Disease, 2016ZX-008-01) and Science and Technology Planning Projects of Wuhan (2018061005132295).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhen-guo Ma or Qi-zhu Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hu, C., Wu, Hm. et al. Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin 42, 1390–1400 (2021). https://doi.org/10.1038/s41401-020-00557-5

Download citation

Keywords

  • cardiovascular and metabolic diseases
  • FNDC5
  • biomarker
  • therapeutic target

Further reading

Search

Quick links