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Fibronectin type III domain-containing 5 in cardiovascular
and metabolic diseases: a promising biomarker and therapeutic
target
Xin Zhang1,2, Can Hu1,2, Hai-ming Wu1,2, Zhen-guo Ma1,2 and Qi-zhu Tang1,2

Cardiovascular and metabolic diseases are the leading causes of death and disability worldwide and impose a tremendous
socioeconomic burden on individuals as well as the healthcare system. Fibronectin type III domain-containing 5 (FNDC5) is a widely
distributed transmembrane glycoprotein that can be proteolytically cleaved and secreted as irisin to regulate glycolipid metabolism
and cardiovascular homeostasis. In this review, we present the current knowledge on the predictive and therapeutic role of FNDC5
in a variety of cardiovascular and metabolic diseases, such as hypertension, atherosclerosis, ischemic heart disease, arrhythmia,
metabolic cardiomyopathy, cardiac remodeling, heart failure, diabetes mellitus, and obesity.
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INTRODUCTION
Cardiovascular and metabolic diseases, including obesity, diabetes
mellitus, and multiple cardiovascular injuries, are the leading
causes of death and disability worldwide due to unhealthy
behaviors, environmental toxins and genetic variants, and these
conditions impose a tremendous socioeconomic burden on
individuals and the healthcare system [1]. Despite improvements
in health consciousness and medical practice, the prognosis of
cardiovascular and metabolic diseases remains unsatisfactory, and
effective interventions are still lacking.
Fibronectin type III domain-containing 5 (FNDC5) functions as a

type I transmembrane glycoprotein to be proteolytically cleaved
at the carboxy terminal to release irisin, which is mainly composed
of the fibronectin III domain of FNDC5 [2]. FNDC5 was initially
identified by two independent laboratories in 2002 and has
attracted considerable attention since its definition as the
precursor of an exercise-induced polypeptide myokine 10 years
later [2–4]. Emerging studies have determined the wide distribu-
tion of FNDC5 in different body compartments, especially in those
with high energy demand (e.g., the heart, adipose tissue, brain,
liver, and skeletal muscle). Most of these studies demonstrated
that FNDC5 is mainly expressed in skeletal muscle and adipose
tissue; nevertheless, we recently detected a higher abundance of
Fndc5 mRNA in the heart than in skeletal muscle [2, 5–7]. In
general, ~72% of circulating irisin is attributable to muscle
secretion, while the remaining 28% appears from adipose tissue
[2, 5]. Previous studies by us and other laboratories also revealed
the pleiotropic roles of FNDC5 in regulating inflammation,
oxidative stress, apoptosis, autophagy, angiogenesis, and mito-
chondrial function [6, 8–11]. However, its specific receptors remain

elusive to date. Kim et al. reported that αV integrins are potential
irisin receptors in osteocytes and fat cells and that chemical
inhibition of αV integrins remarkably blocks signaling and function
by irisin [12]. Irisin also interacts with transforming growth factor-
beta type II receptor (TGFBR2) to activate the downstream
mitogen-activated protein kinases, indicating TGFBR2 as a
probable receptor for irisin [13]. In addition, some investigators
proved that the biological functions of irisin might not depend on
a receptor-mediated mode. Extracellular irisin can be taken up
from circulation to lung cells via lipid raft-mediated endocytosis to
prevent pulmonary ischemia–reperfusion (I/R) injury [10]. More-
over, the typical fibronectin III domain and plasma membrane
distribution of FNDC5 strongly suggest its potential as a receptor
for unidentified ligands [3]. With these findings in mind, FNDC5
was reported to be essential for regulating glycolipid metabolism
and cardiovascular homeostasis under either basal or stress
conditions [2, 14]. Liu et al. determined that FNDC5 deficiency
causes lipid accumulation in the liver and increases serum
nonesterified fatty acid levels under normal conditions [11].
FNDC5 overexpression or irisin treatment stimulate lipid oxidation
and energy expenditure and decrease circulating free fatty acid
concentrations at baseline [2, 15]. Li et al. found that neither
overexpression nor knockout of FNDC5 affects growth or body
weight and that plasma glucose and insulin levels are unaffected
[16].
In this review, we characterize FNDC5 alterations in response to

different cardiovascular and metabolic stresses to evaluate the
predictive roles of these alterations in these diseases and
summarize the biological functions of FNDC5 to determine its
therapeutic value in cardiovascular and metabolic diseases.
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FNDC5 AND HYPERTENSION
Hypertension is a set of clinical and pathological syndromes and is
characterized by the elevation of systolic and/or diastolic blood
pressure [17]. Previous studies detected lower serum irisin levels in
hypertensive patients and found that serum irisin levels negatively
correlated with systolic/diastolic blood pressure [18–20]. In
addition, the FNDC5 single-nucleotide polymorphism (SNP)
rs1746661 T-allele variant was reported to be associated with
higher systolic blood pressure, while no correlation was found
between the other two SNPs (rs16835198 and rs3480) and
hypertension [21, 22]. Intriguingly, the antihypertensive drugs
valsartan and amlodipine notably increased serum irisin levels
after 12 weeks of treatment [20]. The hypothalamic paraven-
tricular nucleus (PVN) is an important autonomic control center in
the brain that regulates neurohormonal output and sympathetic
tone. Balancing the inhibitory and excitatory neuronal inputs
within the PVN is crucial to prevent sympathetic overdrive and
hypertension [23, 24]. Huo et al. found that central irisin restored
neurotransmitter balance in the PVN and decreased plasma
norepinephrine concentrations, thereby reducing blood pressure
[25]. Wang et al. also demonstrated the inhibitory effect of
peripheral irisin on blood pressure in both control and sponta-
neously hypertensive rats. However, they stated that central
administration of irisin into the third brain ventricle activates
neurons in the PVN and increases blood pressure [22]. The
endothelium, vascular smooth muscle, and adventitial fibroblasts
coordinately orchestrate to maintain vascular homeostasis, whose
dysfunction contributes to arterial stiffness and hypertension.
Previous studies showed that circulating irisin positively correlates
with endothelium-dependent vasodilation [26, 27]. Mechanisti-
cally, irisin activates endothelial nitric oxide synthase to increase
nitric oxide production and stimulates transient receptor potential
vanilloid subtype 4 channel-dependent extracellular calcium influx
[28–32]. In addition, irisin promotes endothelium-independent
vasodilation by inhibiting extracellular calcium influx and intra-
cellular release in mesenteric arteries [33]. Phenotypic activation of
vascular smooth muscle cells (VSMCs) and adventitial fibroblasts
promotes extracellular matrix deposition, vascular remodeling,
and arterial stiffness. Song et al. and Ling et al. revealed that irisin
treatment significantly decreases the synthesis and secretion of
matrix components, thereby preventing vascular remodeling and
hypertension [9, 34]. Hyperhomocysteinemia is a crucial risk factor
for arterial stiffness and hypertension, whereas circulating irisin is
inversely associated with the serum homocysteine concentration
[35]. Collectively, these data reveal FNDC5 as a novel biomarker
and promising therapeutic target for hypertension.

FNDC5 AND ATHEROSCLEROSIS
Atherosclerosis is considered as a chronic inflammatory disease
that is due to lipid metabolism disorder, endothelial injury, VSMC
proliferation, monocyte adhesion, and foam cell formation, which
then boosts matrix synthesis, artery calcification, wall thickening,
luminal narrowing, and fibrous cap rupture and eventually causes
thrombosis [36]. Circulating irisin levels are proven to be
associated with the progression of vascular atherosclerosis and
are regarded as an independent predictor for subclinical athero-
sclerosis [37–41]. Hisamatsu et al. observed a reverse correlation
between serum irisin levels and artery calcification, and they also
revealed that higher serum irisin levels correlated with a lower
burden of coronary atherosclerosis [42]. These findings indicate a
predictive role for FNDC5 expression in atherosclerosis. Dyslipide-
mia is one of the most important initiators of vascular injury and
atherosclerosis, and FNDC5 plays an indispensable role in
maintaining lipid homeostasis (reviewed in the “FNDC5 and
obesity” section) [2, 11, 43]. In particular, apolipoprotein E (ApoE) is
an important component of plasma lipoproteins required for
normal lipoprotein metabolism and antiatherogenic regulation

[44, 45]. Fuku et al. reported the association between FNDC5
rs16835198 and the APOE ε2/ε4 allele; however, whether this
association directly causes atherosclerosis needs further clarifica-
tion [46]. Endothelial damage is another key determinant for
atherosclerosis and a prerequisite for lipid deposition, monocyte
adhesion, and intimal thickening [36]. FNDC5 directly promotes
endothelial cell proliferation and suppresses cell apoptosis and
vascular inflammation, thereby sustaining endothelial home-
ostasis [47, 48]. In addition, Zhu et al. found that FNDC5 improved
the function of endothelial progenitor cells and helped with
endothelial repair [49]. The accumulation of oxidized low-density
lipoprotein (oxLDL) is the main pathogenic factor for endothelial
injury, monocyte recruitment and foam cell formation [36]. A
previous study showed that FNDC5 alleviates oxLDL-induced
endothelial inflammation, oxidative stress, and apoptosis, thereby
preventing the development of atherosclerosis [50]. Monocytes,
the predominant inflammatory cells during the development of
atherosclerosis, are recruited to the subendothelial layer of the
arterial wall, where they differentiate into macrophages and
engulf oxidized lipoproteins to form foam cells [36]. In addition to
proinflammatory cytokines, adhesion molecule upregulation is an
important prerequisite for monocyte docking and infiltration. The
results from Zang et al. indicated that FNDC5 suppressed the
expression of vascular cell adhesion molecule-1 and inhibited
monocyte adhesion to VSMCs [51]. However, higher irisin levels
also caused E-selectin and intracellular adhesion molecule-1
upregulation in primary human umbilical vein endothelial cells
[52]. VSMCs are another important source for foam cells, and a
previous study showed that 45% of foam cells have a VSMC
phenotype in advanced atherosclerosis lesions [53]. Zang et al.
showed that FNDC5 treatment significantly inhibited oxLDL-
mediated foam cell formation in VSMCs [51]. These studies clearly
determine the antiatherogenic functions of FNDC5 and propose it
as a potential therapeutic target.

FNDC5 AND ISCHEMIC HEART DISEASE
Ischemic heart disease remains the primary cause of death
worldwide due to the induction of congestive heart failure and
life-threatening arrhythmias. Timely blood flow restoration by
percutaneous coronary intervention is an effective intervention to
rescue viable cardiomyocytes, but it also causes additional I/R
damage [54]. Previous studies indicated that circulating irisin is
decreased in patients with either stable coronary artery disease
(CAD) or myocardial infarction but gradually increases after
coronary bypass surgery [55–59]. Moreover, Aydin et al. found a
completely negative correlation between circulating irisin and
“gold standard” levels (serum troponin I, creatine kinase iso-
enzymes, and creatine kinase). In addition to serum irisin, they
revealed that saliva irisin also correlated with serum “gold
standard” levels, defining irisin as a new and perhaps noninvasive
biomarker for patients with acute myocardial infarction [60].
Infarcted patients with lower serum irisin levels had more severe
fibrotic remodeling, cardiac dysfunction and an increased risk for
adverse cardiovascular outcomes [61–63]. In contrast, two studies
reported a positive association between serum irisin and the risk
for major adverse cardiovascular events. The authors explained
that the higher serum irisin levels represent an irisin-resistant
status with increased cardiovascular and metabolic risks or are a
direct result due to severe muscle damage [64, 65]. Reactive
oxygen species (ROS) overproduction promotes oxidative damage
to biomacromolecules and triggers cardiomyocyte apoptosis [66].
Mitochondria are the major source of ROS within the myocardium.
Previous studies suggested that FNDC5 targets mitochondria and
interacts with antioxidant molecules to prevent ROS overproduc-
tion and cardiomyocyte apoptosis during myocardial I/R injury
[10, 67, 68]. Surprisingly, excessive irisin increases mitochondrial
ROS generation and aggravates cardiomyocyte apoptosis in a
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hypoxic environment [69]. Microvessel angiogenesis is a possible
cardioprotective mechanism for ischemic heart disease, and we
previously showed that revascularization is essential for the repair
of infarcted myocardium [70]. FNDC5 markedly promotes the
proliferation of vascular endothelial cells and increases micro-
vessel density, thereby protecting against ischemic heart disease
[8, 71]. Cardiac progenitor cells have been show to be the specific
regenerative cell source within the heart and have beneficial
effects on cardiac regeneration and neovascularization [72]. Zhao
et al. found that irisin pretreatment enhances the protective
capacity of cardiac progenitor cells in terms of myocardial repair
and functional improvement in the infarcted heart [73]. In a
randomized controlled trial, the investigators demonstrated that
omega-3 fatty acid supplementation elevates serum irisin and
then attenuates the inflammatory response as well as lipid
metabolism dysfunction in male CAD patients [74]. Iloprost and
sildenafil are the two pharmacological agents for blood supply
restoration and reoxygenation via vasodilatation during ischemic
conditions. Aydin et al. proved that irisin elevation by individual or
combined administration of iloprost and sildenafil contributes to
wound recovery and cardioprotection in myocardial infarction
[75]. Overall, targeting FNDC5 may provide therapeutic value to
patients with myocardial infarction.

FNDC5 AND ARRHYTHMIA
Arrhythmia is characterized by an abnormal heart rate and/or
rhythm due to a disorder in electrical impulse origination and/or
propagation [76]. Considering that athletes have higher irisin
levels and lower resting heart rates, it is reasonable to conclude
that FNDC5 is required to maintain a normal heart beat. The
physical cardiac conduction depends on stable electrocardial
activity, normal cardiac structure, and balanced autonomic
nervous system. Sundarrajan et al. showed that exogenous irisin
increases the heart rate, while irisin knockdown has the opposite
effect [77]. Calcium participates in regulating cell membrane
potential, which is essential for the repolarization of myocardial
action potential and neuronal excitatory conduction. Xie et al.
found that irisin treatment significantly increases intracellular
calcium concentration via an irisin-specific membrane receptor in
H9C2 cells [78]. In addition, irisin treatment induces an increase in
cytosolic calcium levels and neuronal depolarization of nucleus
ambiguus neurons, thereby evoking bradycardia in conscious rats
[79]. FNDC5 also activates the NF-E2-related factor 2 (Nrf2)
pathway in the hypothalamic PVN, decreases circulating norepi-
nephrine levels, and effectively prevents sympathetic overdrive
[25]. Normal cardiac architecture is pivotal for electrocardial
conduction, whereas structural remodeling triggers electrical
remodeling and the occurrence of arrhythmia. As mentioned later
(“FNDC5 and cardiac remodeling”), various studies have revealed
the protective effect of FNDC5 on cardiac hypertrophy and fibrotic
remodeling. These data support the involvement of FNDC5 in
arrhythmia, and further studies are needed to characterize its
exact role and potential molecular basis under pathological
conditions.

FNDC5 AND METABOLIC CARDIOMYOPATHY
Metabolic cardiomyopathy develops under the context of
systemic metabolic disorders that are characterized by structural
and functional alterations without CAD or hypertension. Hyper-
glycemia or hyperlipidemia-induced metabolic disturbance trig-
gers chronic low-grade inflammation within the heart, which
subsequently provokes oxidative injury, endoplasmic reticulum
stress, mitochondrial dysfunction, cardiomyocyte apoptosis, and
fibrotic remodeling, thereby leading to impairment of both
diastolic and systolic functions [80]. Consistently, our previous
studies revealed that the attenuation of inflammation, oxidative

stress, and cardiomyocyte apoptosis by either genetic or
pharmacological methods significantly improved cardiac dysfunc-
tion in response to diabetes mellitus or obesity [81–83]. The results
from Stratigou et al. showed that serum irisin levels are
independently related to inflammation, insulin resistance, and
other cardiovascular and metabolic risk factors [84]. Moreover,
FNDC5 overexpression remarkably diminished obesity-induced
cardiac inflammation, oxidative stress, and hypertrophic remodel-
ing [85]. Excessive lipid accumulation within the myocardium
causes lipotoxicity and promotes myocardial inflammation,
oxidative damage, and cardiomyocyte apoptosis. Interestingly,
irisin incubation counteracts lipotoxicity and cardiomyocyte
apoptosis [86]. Cardiac fibrosis is a key feature of metabolic
cardiomyopathy and contributes to congestive heart failure and
lethal arrhythmia. Endothelial-to-mesenchymal transition func-
tions as an important source of cardiac fibroblasts and plays an
indispensable role in fibrotic remodeling in the context of
metabolic dysfunction [87]. We previously showed that inhibiting
endothelial-to-mesenchymal transition significantly ameliorates
fibrotic remodeling and cardiac dysfunction [88, 89]. Liu et al.
proved the inhibitory role of FNDC5 in the high glucose-induced
endothelial-to-mesenchymal transition and the cardioprotective
effect during diabetic cardiomyopathy. Unexpectedly, they also
found that high-dose irisin treatment accelerates the proliferation
and migration of cardiac fibroblasts, thereby resulting in excessive
collagen deposition and cardiac dysfunction [90]. Autophagy
disorder is responsible for the initiation and progression of
diabetic cardiomyopathy, and we previously showed that
autophagy restoration notably decreases inflammation, oxidative
stress, apoptosis, and cardiac dysfunction in diabetic hearts
[91, 92]. Liu et al. demonstrated that Fndc5 overexpression
prevents and that Fndc5 deficiency exacerbates autophagy
impairment and lipid accumulation [11]. In contrast to the
extensive effects of visceral adipose tissue (VAT) on the whole
body, epicardial fat is physically next to the myocardium and
shares the same microcirculation that is important for cardiac
regulation [93]. Increased epicardial fat volume independently
correlates with myocardial fat accumulation, fibrosis, and cardiac
dysfunction in the context of metabolic disturbance [94, 95].
Previous studies have shown a significant association between
circulating irisin and epicardial fat; however, more thorough
studies are required to further dissect the underlying mechanisms
[96, 97]. These results reveal the beneficial effect of FNDC5 against
metabolic cardiomyopathy.

FNDC5 AND CARDIAC REMODELING
Cardiac remodeling is characterized by cardiomyocyte hypertro-
phy and interstitial fibrosis upon various cardiac stresses, leading
to both enhanced myocardial stiffness and compromised cardiac
contractility [98]. Under pathological conditions, cardiomyocyte
hypertrophy occurs as an adaptive response to incremental
biomechanical loads after the activation of a series of hypertrophic
pathways. Beyond the cardiomyocyte-centric view, cardiac fibro-
blasts are involved in orchestrating fibrotic remodeling of the
heart by regulating myocardial collagen turnover [87, 98]. Cardiac
remodeling is an independent risk factor for heart failure,
arrhythmia, and sudden death and serves as a key determinant
of the clinical course and long-term outcome of patients with
cardiovascular diseases [98]. Our previous studies provide further
understanding of the pathogenesis of cardiac remodeling, and
these data suggest that inhibiting cardiac remodeling by either
pharmacological or genetic methods notably improves cardiac
dysfunction and survival [99–103]. Bashar et al. revealed a
negative correlation between the serum irisin level and myocar-
dial collagen volume in infarcted hearts [62]. Further studies
revealed that irisin treatment activates Nrf2 and suppresses the
ROS/TGF-β/Smad pathway in cardiac fibroblasts, which
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subsequently blunts collagen synthesis and fibroblast-
myofibroblast transformation [104]. In addition, irisin administra-
tion promotes angiogenesis in the infarct border zone and thus
reduces cardiac fibrosis and ventricular dilation [8]. Smad3 is the
best-known fibrogenic transcriptional factor that directly mediates
myofibroblast activation and fibrotic response, and we previously
showed that Smad3 inhibition significantly alleviates myofibro-
blast activation and cardiac fibrosis [105, 106]. Tiano et al.
identified a putative Smad3 binding site in the Fndc5 promoter,
and Smad3 activation decreased FNDC5 expression, indicating the
connection between FNDC5 and Smad3 [107, 108]. A further study
by Peng et al. proved that irisin interacts with TGFBR2 to interfere
with its recruitment to TGFBR1, thereby preventing Smad3
activation and fibrogenesis [13]. In addition, irisin treatment
inhibits the high glucose-induced endothelial-to-mesenchymal
transition and has a cardioprotective effect on fibrotic remodeling
in diabetic hearts [90]. FNDC5 also participates in the regulation of
pathological cardiac hypertrophy. Li et al. proved that FNDC5
provokes a protective autophagy flux by activating 5′ AMP-
activated protein kinase (AMPK)/Unc-51-like kinase 1 signaling to
alleviate pressure overload-induced cardiac hypertrophy, whereas
Yu et al. found that the antihypertrophic effect of FNDC5 might be
attributed to AMPK-mediated mammalian target of rapamycin
suppression in a pressure overload-induced hypertrophic model
[16, 109]. In addition, Geng et al. suggested that FNDC5 prevents
obesity-induced cardiac hypertrophy by decreasing intramyocar-
dial inflammation and oxidative stress [85]. These studies reveal
FNDC5 as a promising therapeutic target for cardiac remodeling.

FNDC5 AND HEART FAILURE
Heart failure is the common end stage of various cardiovascular
diseases and places a heavy burden on individuals, families and
society as a whole. Currently, no reliable biomarkers (except N-
terminal pro-brain natriuretic peptide, NT-proBNP) or effective
therapeutic strategies are available for failing hearts [110]. As
indicated in the above context, FNDC5 significantly improves
cardiac dysfunction under different pathological conditions and
prevents undesirable cardiac remodeling. Previous studies sug-
gested that patients with heart failure have decreased serum irisin
levels, especially in heart failure with reduced ejection fraction
[63, 111]. Some investigators explained that the reduced irisin
levels might be ascribed to inflammation or protein energy
wasting instead of volume overload [112, 113]. A previous study
demonstrated that infarcted patients with higher circulating irisin
were more likely to develop heart failure and adverse cardiovas-
cular outcomes [65]. In addition, serum irisin levels positively
correlate with circulating BNP, the New York Heart Association
class and 1-year all-cause mortality [114, 115]. More importantly,
the results from Shen et al. confirm that serum irisin concentra-
tions have a better prognostic value for acute heart failure than
NT-proBNP [115]. Considering the beneficial effects of FNDC5, we
thought higher circulating irisin might indicate an irisin-resistant
status or a more severe cardiac injury. In addition, FNDC5
expression in skeletal muscle also correlates with the aerobic
performance of heart failure patients [116]. These data suggest
that FNDC5 could be regarded as a promising biomarker and
therapeutic target for heart failure.

FNDC5 AND OTHER CARDIOVASCULAR DISEASES
Doxorubicin remains the cornerstone of tumor chemotherapy
regimens; however, its therapeutic value is extremely hampered
by its cardiotoxicity. Inflammation, oxidative stress, and cardio-
myocyte apoptosis are responsible for doxorubicin-elicited cardiac
dysfunction [117]. Our previous studies confirmed that inhibiting
these pathogenic factors markedly protects against doxorubicin-
induced acute or chronic cardiotoxicity [66, 118–121]. Aydin et al.

found that myocardial and serum irisin levels are upregulated in
doxorubicin-treated rats, while we recently proved that doxor-
ubicin treatment notably suppresses FNDC5 expression in murine
hearts and H9C2 cells. Moreover, cardiomyocyte-specific FNDC5
overexpression or irisin infusion alleviates oxidative stress and
cardiomyocyte apoptosis, thereby preventing doxorubicin-
induced cardiac dysfunction [6, 122].
Septic cardiomyopathy is a common complication in patients

with severe sepsis, manifesting as reversible cardiac depression
and ventricular dilation [123]. We previously reported that
restraining inflammation, apoptosis, and pyroptosis significantly
prevent the progression of septic cardiomyopathy [124–126].
However, mitochondrial fission also contributes to septic cardio-
myopathy by provoking mitochondrial fragmentation, oxidative
damage, and apoptosis. Tan et al. observed that irisin treatment
prevents mitochondrial fission and dysfunction, thereby amelior-
ating septic cardiomyopathy [127]. Lipopolysaccharide (LPS) is a
main component of the outer membrane in gram-negative
bacteria and functions as the major inducer of septic cardiomyo-
pathy. A previous study observed that individuals with high
circulating irisin have significantly lower serum LPS concentrations
[128].
In addition, FNDC5 might also be implicated in the pathogen-

esis of cardiac dysfunction among hemodialysis patients. Kałużna
et al. observed that serum irisin level negatively correlates with
right ventricular diameter and identified it as a potential
prognostic biomarker of cardiac status in hemodialysis patients
[129].

FNDC5 AND DIABETES MELLITUS
Diabetes mellitus is a clinically heterogeneous endocrine/meta-
bolic disorder caused by insulin deficiency or resistance, and no
specific biomarkers or therapeutic strategies are available to date
[130]. Many studies detected lower serum irisin levels in patients
with type 2 diabetes mellitus (T2DM) that were further reduced
with the progression of glucose intolerance [27, 129, 131–134]. In
addition, Choi et al. demonstrated that higher irisin levels were
associated with lower odds of prevalent newly diagnosed T2DM,
suggesting a protective effect of irisin against T2DM [135].
However, a small number of researchers observed an increased
serum irisin level in T2DM patients, and they attributed this
elevation to a probable irisin-resistant status or a compensatory
mechanism to improve glucose intolerance [52, 136–138]. In
contrast to the decreased irisin level in T2DM patients, circulating
irisin was increased in T1DM patients compared with nondiabetic
control subjects [139–141]. This discrepancy was deemed to be a
result of the distinct insulin levels in different types of diabetes
mellitus. They demonstrated a negative correlation between
circulating irisin and serum insulin levels and that increased irisin
concentrations compensated for the reduced insulin levels
[136, 139, 142, 143]. Some investigators also proved that serum
irisin levels predict the status of inflammation, oxidative stress,
glucose homeostasis, and insulin sensitivity in diabetic animals or
patients, which confirms the predictive role of FNDC5 in diabetes
mellitus [128, 137, 144, 145].
Many direct or indirect effects of FNDC5 on glucose regulatory

mechanisms in different organs are required for its protection
against insulin resistance and diabetes mellitus, which is reviewed
in detail by Perakakis et al. [14]. In this review, we briefly
summarized the role of FNDC5 in insulin regulation and
glycometabolic processes. Previous studies determined that
circulating irisin correlates with pancreatic β-cell function and that
irisin treatment significantly improves glucolipotoxicity-associated
β-cell apoptosis and insulin reduction [146–148]. In addition, Guo
et al. showed that plasma free fatty acid-mediated FNDC5
downregulation elicits insulin resistance, whereas irisin supple-
mentation can restore insulin sensitivity [15, 149]. Glucose uptake
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is the first step and a prerequisite for normal glycometabolic
processes. It is well known that glucose uptake depends on the
upregulation and membrane translocation of glucose transporter 4
(GLUT4). Many studies have suggested that FNDC5 increases
GLUT4 expression and membrane translocation, thereby promot-
ing glucose uptake in adipocytes and muscle cells [150–153]. In
addition, FNDC5 enhances the abundance of lactate dehydrogen-
ase A and pyruvate dehydrogenase kinase 1 (two crucial enzymes
in glycolysis) to accelerate aerobic glycolysis [13, 154]. Hepatic
gluconeogenesis is a key source of blood glucose, and some
investigators observed an inhibitory effect of FNDC5 on gluconeo-
genesis [153, 155]. FNDC5 also suppresses the enzymes for
glycogenolysis (glycogen phosphorylase) and enhances the
enzymes for glycogen synthesis (glycogen synthase), thereby
decreasing blood glucose [150, 155]. Moreover, several studies
have reported the synergistic effects of irisin and other hormones
in maintaining glucose homeostasis, such as betatrophin (also
known as angiopoietin-like protein 8) and leptin [156, 157].
There are some specific types of diabetes mellitus, including

gestational diabetes mellitus (GDM) and polycystic ovarian
syndrome (PCOS). Previous studies observed that serum irisin
concentrations are markedly increased in pregnant women but
decreased in GDM patients, as is irisin in breast milk [158–163].
The authors of those studies suggest that irisin upregulation is a
compensatory response to energy imbalance and hormone
disorder during pregnancy and that decreased irisin exacerbates
GDM progression [164, 165]. Of note, serum irisin downregulation
in pregnant women correlates with an increased risk for GDM
progression and can be identified as an early biomarker to predict
later development of GDM [166, 167]. PCOS is a complex and
heterogeneous disease that is frequently accompanied by insulin
resistance [168]. In PCOS patients, most investigators detected an
elevation in circulating irisin that might be secondary to insulin-
resistant conditions or hyperandrogenism [143, 169–172]. Accord-
ingly, Li et al. demonstrated that metformin treatment for
6 months improved insulin resistance and subsequently
decreased serum irisin levels in PCOS patients [173]. Several
studies observed that circulating irisin is downregulated in PCOS
patients and that the reduction in granulosa cells exacerbates
metabolic disturbance [174–176]. Circulating irisin in PCOS
patients is also closely correlated with body fat content, bone
mineral density, endometrial receptivity, and metabolic home-
ostasis [175, 177–179].
In addition, FNDC5 SNPs play an important role in regulating

multiple metabolic processes, especially glucose homeostasis.
Despite being rarely seen in patients with T2DM or diabetic
nephropathy, the rs16835198 T allele significantly decreases T2DM
prevalence among Egyptians [180]. Conversely, the rs16835198 G
allele has insulin desensitizing action and causes increases in
glycated hemoglobin and fasting plasma glucose [180–182].
FNDC5 SNP rs16835198 was reported to correlate with pancreatic
β-cell function and glycometabolism; however, it does not affect
fasting insulin levels [182, 183]. Moreover, the rs3480 G allele and
rs726344 A allele were found to be linked to severe insulin
resistance, whereas the T allele of rs1746661 correlates with
higher systolic blood pressure and dyslipidemia among women
with T2DM [21, 181, 182, 184]. A previous study found that the
FNDC5 rs157069 T allele notably decreases insulin sensitivity by
downregulating serum irisin levels and further promotes the
development of proliferative diabetic retinopathy in a Chinese
population [137, 185]. These results support the important role of
FNDC5 expression and genetic SNPs in diabetes mellitus,
including GDM and PCOS.

FNDC5 AND OBESITY
Obesity has been shown to be an increasing global public health
concern and serves as a predisposing factor for various

cardiovascular and metabolic diseases [82, 186]. FNDC5 is widely
distributed in different human tissues, especially adipose tissue,
and helps to maintain normal lipid metabolism [5, 187]. Most
studies found that circulating irisin levels and tissue FNDC5
expression are higher in obese patients but lower in normal-
weight control subjects or anorexic individuals [188–192]. Human
adipose tissue is a primary source of FNDC5, and adipocytes in
VAT or subcutaneous adipose tissue (SAT) from overweight
patients produce more irisin than those from healthy control
subjects [5, 193, 194]. In addition, Gao et al. reported that irisin
incubation further promotes irisin secretion from adipocytes by
upregulating FNDC5 expression in an autocrine manner [195]. We
reasonably speculate that this positive feedback helps to elevate
circulating irisin levels in obese patients. However, some other
studies reported conflicting results. Moreno-Navarrete et al.
showed that circulating irisin and FNDC5 gene expression in
adipose tissue or muscle are significantly decreased in association
with obesity [196]. In addition, a reduction in serum irisin levels
and FNDC5 expression within the brain has been observed in
animals fed a high-fat diet [197, 198]. The discrepancy might be
ascribed to the heterogeneity of subjects in these studies, as some
studies included obese patients with metabolic syndrome who
had decreased circulating irisin levels due to impaired beige
adipogenesis [199, 200].
Generally, increased circulating irisin independently predicts a

higher risk of obesity and positively correlates with adiposity
indices, including body mass index, waist circumference, fat mass,
and lipid profile [201–204]. Interestingly, previous studies indi-
cated that higher irisin expression helps to maintain the home-
ostasis of lipid metabolism [2, 11, 205, 206]. These studies proved
that FNDC5 overexpression or irisin treatment drives adipocyte
browning and lipid oxidation and suppresses adipogenesis and
cholesterol synthesis, thereby improving whole body energy
expenditure and obesity [43, 207–211]. In addition, FNDC5
overexpression delays the accumulation and M1 polarization of
macrophages in adipose tissue and reduces local inflammation to
inhibit obesity progression [212–214]. Moreover, central or
peripheral irisin treatment significantly suppresses food intake
and energy input [215–217]. FNDC5 SNPs are also involved in the
pathogenesis of obesity and its complications. The results from
Todendi et al. and others demonstrated that the rs726344 G allele
and rs16835198 T-allele variants increase susceptibility to obesity
[218, 219]. Two additional studies reported an association of the
FNDC5 rs3480 G allele with hepatic steatosis and fibrotic
remodeling [220, 221]. Considering these beneficial effects of
FNDC5 on obesity, we speculate that FNDC5 upregulation acts as a
compensatory mechanism for the increased fat storage and
energy expenditure impairment.
Various pharmacological, nonpharmacological, or even surgical

interventions are advised to increase circulating or local FNDC5
production and then improve abnormal lipid profiles together
with obesity. Consistent with its powerful effect on FNDC5
upregulation and weight loss, kinesitherapy exercise has been
proposed as a first-line strategy against obesity and relevant
complications. Previous studies observed an increased circulating
irisin level in obese subjects with different training modes, and
Kartinah et al. further determined that exercise enhances irisin
uptake from circulation into adipose tissue, where it maintains
lipid homeostasis [222–225]. Obesity is an independent risk factor
for other cardiovascular and metabolic diseases that are notably
prevented by exercise-induced FNDC5 in our aforementioned
parts. Kang et al. also reported that swimming effectively elevates
circulating irisin and bone FNDC5 levels and improves obesity-
elicited osteoporosis [226]. Intriguingly, compensatory upregula-
tion of FNDC5 in overweight subjects is reduced in parallel with
body weight after hypocaloric dietary treatment, indicating an
improved lipid profile [227–229]. Furthermore, oral administration
of resveratrol upregulates FNDC5 expression in human SAT and
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promotes adipocyte energy expenditure [230]. Of note, some
investigators observed an alteration in circulating irisin in fatty
patients after bariatric surgery, which is accompanied by
significant weight loss and improved metabolic status [231–233].
These data provide a safe and efficacious intervention strategy
that involves regulating FNDC5 expression to mitigate obesity in
human subjects.

CONCLUSION AND PERSPECTIVE
FNDC5 has received considerable attention since its first descrip-
tion as the precursor of an exercise-induced polypeptide myokine,
irisin, which shares 100% identity between mice and humans.
FNDC5 is widely distributed in different body compartments,
especially in tissues with high energy demand, and has protective
effects against cardiovascular and metabolic disturbance. The
current review summarizes the potential involvement of FNDC5 in
cardiovascular and metabolic homeostasis, thereby defining
FNDC5 as a promising biomarker and therapeutic target for
cardiovascular and metabolic diseases (Fig. 1). Despite the
detailed understanding of the role of FNDC5 in various
pathophysiological processes, several questions remain to be
answered. First, special antibodies for distinguishing FNDC5 and
irisin are urgently required. Second, identifying the specific
receptors for irisin and dissecting the possible action modes will
be a large leap forward in this field. Third, an accurate splicing
procedure from FNDC5 to irisin demands further clarification.
Fourth, whether the functions of FNDC5 are realized by cleaved
irisin or by FNDC5 itself should be thoroughly explored. Finally,
inconsistencies in reported data highlight the necessity for more
accurate and well-designed clinical studies to demonstrate the
predictive and therapeutic role of FNDC5 in cardiovascular and
metabolic diseases.
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