Crystallography-guided discovery of carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators: insights into different protein behaviors with “short” and “long” inverse agonists


A series of 6-substituted carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators were discovered through 6-position modification guided by insights from the crystallographic profiles of the “short” inverse agonist 6. With the increase in the size of the 6-position substituents, the “short” inverse agonist 6 first reversed its function to agonists and then to “long” inverse agonists. The cocrystal structures of RORγt complexed with the representative “short” inverse agonist 6 (PDB: 6LOB), the agonist 7d (PDB: 6LOA) and the “long” inverse agonist 7h (PDB: 6LO9) were revealed by X-ray analysis. However, minor differences were found in the binding modes of “short” inverse agonist 6 and “long” inverse agonist 7h. To further reveal the molecular mechanisms of different RORγt inverse agonists, we performed molecular dynamics simulations and found that “short” or “long” inverse agonists led to different behaviors of helixes H11, H11’, and H12 of RORγt. The “short” inverse agonist 6 destabilizes H11’ and dislocates H12, while the “long” inverse agonist 7h separates H11 and unwinds H12. The results indicate that the two types of inverse agonists may behave differently in downstream signaling, which may help identify novel inverse agonists with different regulatory mechanisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Recently reported RORγt modulators.
Fig. 2
Scheme 1: Synthesis of carbazole-based RORγt modulators a.
Fig. 3: Crystal structure of RORγt(265-509)-LBD with compound 6 (PDB code: 6LOB, resolution of 2.40 Å).
Fig. 4
Fig. 5: The superimposed crystal structures of ligands 6, 7d, and 7h within the LBD of RORγt.
Fig. 6: Conformational changes of His479 and Tyr502 in three systems.
Fig. 7: Positional RMSD (in Å) for atoms of the H11, H11’ and H12 along the simulation time (ns).
Fig. 8: Results of structural monitoring of the H11, H11’ and H12 from the MD trajectory.


  1. 1.

    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    CAS  Article  Google Scholar 

  2. 2.

    Yuan C, Chen H, Sun N, Ma X, Xu J, Fu W. Molecular dynamics simulations on RORgammat: insights into its functional agonism and inverse agonism. Acta Pharmacol Sin. 2019;40:1480–9.

    CAS  Article  Google Scholar 

  3. 3.

    Li X, Anderson M, Collin D, Muegge I, Wan J, Brennan D, et al. Structural studies unravel the active conformation of apo RORgammat nuclear receptor and a common inverse agonism of two diverse classes of RORgammat inhibitors. J Biol Chem. 2017;292:11618–30.

    CAS  Article  Google Scholar 

  4. 4.

    Kallen J, Izaac A, Be C, Arista L, Orain D, Kaupmann K, et al. Structural states of RORgammat: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds. ChemMedChem. 2017;12:1014–21.

    CAS  Article  Google Scholar 

  5. 5.

    Mahalingam D, Wang J, Hamilton EP, Sarantopoulos J, Nemunaitis J, Weems G, et al. Phase 1 open-label, multicenter study of first-in-class RORγ agonist LYC-55716 (Cintirorgon): safety, tolerability, and preliminary evidence of antitumor activity. Clin Cancer Res. 2019;25:3508–16.

    CAS  Article  Google Scholar 

  6. 6.

    Sun N, Guo H, Wang Y. Retinoic acid receptor-related orphan receptor gamma-t (RORγt) inhibitors in clinical development for the treatment of autoimmune diseases: a patent review (2016-present). Expert Opin Ther Pat. 2019;29:663–74.

    Article  Google Scholar 

  7. 7.

    Pandya VB, Kumar S, Sachchidanand, Sharma R, Desai RC. Combating autoimmune diseases with retinoic acid receptor-related orphan receptor-gamma (RORgamma or RORc) inhibitors: hits and misses. J Med Chem. 2018;61:10976–95.

    CAS  Article  Google Scholar 

  8. 8.

    Qiu R, Wang Y. Retinoic acid receptor-related orphan receptor γt (RORγt) agonists as potential small molecule therapeutics for cancer immunotherapy. J Med Chem. 2018;61:5794–804.

    CAS  Article  Google Scholar 

  9. 9.

    Wang Y, Yang T, Liu Q, Ma Y, Yang L, Zhou L, et al. Discovery of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as potent RORγt inverse agonists. Bioorgan Med Chem. 2015;23:5293–302.

    CAS  Article  Google Scholar 

  10. 10.

    Rene O, Fauber BP, Boenig GD, Burton B, Eidenschenk C, Everett C, et al. Minor structural change to tertiary sulfonamide RORc ligands led to opposite mechanisms of action. ACS Med Chem Lett. 2015;6:276–81.

    CAS  Article  Google Scholar 

  11. 11.

    Yukawa T, Nara Y, Kono M, Sato A, Oda T, Takagi T, et al. Design, synthesis, and biological evaluation of retinoic acid-related orphan receptor gammat (RORgammat) agonist structure-based functionality switching approach from in house RORgammat inverse agonist to RORgammat agonist. J Med Chem. 2019;62:1167–79.

    CAS  Article  Google Scholar 

  12. 12.

    Wang Y, Cai W, Tang T, Liu Q, Yang T, Yang L, et al. From RORγt agonist to two types of RORγt inverse agonists. ACS Med Chem Lett. 2018;9:120–4.

    CAS  Article  Google Scholar 

  13. 13.

    Huang Y, Yu M, Sun N, Tang T, Yu F, Song X, et al. Discovery of carbazole carboxamides as novel RORγt inverse agonists. Eur J Med Chem. 2018;148:465–76.

    CAS  Article  Google Scholar 

  14. 14.

    Witosch J, Wolf E, Mizuno N. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex. Nucleic Acids Res. 2014;42:12912–27.

    CAS  Article  Google Scholar 

  15. 15.

    Gaffarogullari EC, Krause A, Balbo J, Herten DP, Jaschke A. Microscale thermophoresis provides insights into mechanism and thermodynamics of ribozyme catalysis. RNA Biol. 2013;10:1815–21.

    CAS  Article  Google Scholar 

  16. 16.

    Parker JL, Newstead S. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 2014;507:68–72.

    CAS  Article  Google Scholar 

  17. 17.

    Wang Q, Zhang K, Cui Y, Wang Z, Pan Q, Liu K, et al. Upgrade of macromolecular crystallography beamline BL17U1 at SSRF. Nucl Sci Tech. 2018;29:68.

    Article  Google Scholar 

  18. 18.

    Zhang W, Tang J, Wang S, Wang Z, Qin W, He J. The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility. Nucl Sci Tech. 2019;30:170.

    Article  Google Scholar 

  19. 19.

    Minor W, Cymborowski M, Otwinowski Z, Chruszcz M. HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr. 2006;62:859–66.

    Article  Google Scholar 

  20. 20.

    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–21.

    CAS  Article  Google Scholar 

  21. 21.

    Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.

    CAS  Article  Google Scholar 

  22. 22.

    Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11:3696–713.

    CAS  Article  Google Scholar 

  23. 23.

    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.

    CAS  Article  Google Scholar 

  24. 24.

    Harvey MJ, De Fabritiis G. An implementation of the smooth particle Mesh Ewald method on GPU hardware. J Chem Theory Comput. 2009;5:2371–7.

    CAS  Article  Google Scholar 

  25. 25.

    Fauber BP, Magnuson S. Modulators of the nuclear receptor retinoic acid receptor-related orphan receptor-γ (RORγ or RORc). J Med Chem. 2014;57:5871–92.

    CAS  Article  Google Scholar 

  26. 26.

    Sun N, Yuan C, Ma X, Wang Y, Gu X, Fu W. Molecular mechanism of action of RORγt agonists and inverse agonists: insights from molecular dynamics simulation. Molecules. 2018;23:3181.

    Article  Google Scholar 

  27. 27.

    Xiao S, Yosef N, Yang J, Wang Y, Zhou L, Zhu C, et al. Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity. 2014;40:477–89.

    CAS  Article  Google Scholar 

Download references


We are extremely grateful to the National Centre for Protein Science Shanghai (Protein Expression and Purification system) for their instrument support and technical assistance. We thank the staff from the BL17U1 and BL19U1 beamlines at the Shanghai Synchrotron Radiation Facility (SSRF) for assistance during data collection. We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Numbers: 81703415; 81573276; 81874287; 81973163), the K. C. Wong Education to CL, the Fudan-SIMM Joint Research Fund (Grant Number: FUSIMM20174007), the CAS Strategic Priority Research Program (Grant Number: XDA12020372), the Shanghai Biopharmaceutical Science and Technology Supporting Plan (Grant Number: 17431902100; 19431900100), the National Science and Technology Major Project (Grant Number: 2018ZX09711002-003-014), the Natural Science Foundation of Shanghai (Grant Number: 19ZR1436700), and the China Postdoctoral Science Foundation (Grant Number: 2019M651383).

Author information




MCY, FY, XYD, NNS, QX, HLJ, KXC, CL, XML, SJC, and YHW developed the hypothesis, designed the experiments, and revised the manuscript. MCY, ZYJ, YFH, YRY, and CZ designed and synthesized the compounds. FY, ZFC, and SQG performed the crystallographic studies. MCY, XYD, and NNS conducted the MD simulation and data analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiao-min Luo or Shi-jie Chen or Yong-hui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Mc., Yang, F., Ding, Xy. et al. Crystallography-guided discovery of carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators: insights into different protein behaviors with “short” and “long” inverse agonists. Acta Pharmacol Sin (2020).

Download citation


  • RORγt
  • cocrystal structures
  • MD simulation
  • “short” inverse agonists
  • agonists
  • “long” inverse agonists


Quick links