Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Combinations of proteasome inhibitors with obatoclax are effective for small cell lung cancer

Abstract

Proteasome inhibitors, bortezomib (BTZ), and carfilzomib (CFZ) are approved drugs for hematological malignancies, but lack anticancer activities against most solid tumors. Small cell lung cancer (SCLC) is a very aggressive neuroendocrine carcinoma of the lungs demanding effective therapy. In this study we investigated whether BTZ or CFZ combined with obatoclax (OBX), an antagonist for MCL-1 and a pan-BCL family inhibitor, could cause synergistic growth inhibition of SCLC cells. We showed that combined application of BTZ or CFZ with OBX caused synergistic growth inhibition of human SCLC cell lines (H82, H526, DMS79, H196, H1963, and H69) than single agent alone. Both BTZ–OBX and CFZ–OBX combinations displayed marked synergism on inducing apoptosis (~50% increase vs BTZ or CFZ alone). A comprehensive proteomics analysis revealed that BTZ preferentially induced the expression of MCL-1, an antiapoptotic protein, in SCLC cells. Thus, proteasome inhibitor–OBX combinations could specifically induce massive growth inhibition and apoptosis in SCLC cells. Subsequent proteome-wide profiling analysis of activated transcription factors suggested that BTZ- or CFZ-induced MCL-1 upregulation was transcriptionally driven by FOXM1. In nude mice bearing in SCLC H82 xenografts, both BTZ–OBX, and CFZ–OBX combinations exhibited remarkable antitumor activities against SCLC tumors evidenced by significant reduction of tumor size and the proliferation marker Ki-67 signals in tumor tissues as compared with single agent alone. Thus, proteasome inhibitor–OBX combinations are worth immediate assessments for SCLC in clinical settings.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: BTZ treatment preferentially induced MCL-1 expression in SCLC cells.
Fig. 2: The BTZ–OBX combination caused synergistic growth inhibition in SCLC cells.
Fig. 3: The CFZ–OBX combination caused synergistic growth inhibition in SCLC cells.
Fig. 4: The BTZ–OBX and CFZ–OBX combinations induced synergistic apoptosis.
Fig. 5: BTZ and CFZ induced the transcription of MCL-1 rather than inhibiting its degradation.
Fig. 6: Proteome-wide profiling analysis of activated transcription factors indicated that HIF-1α and FOXM1 were preferentially induced by BTZ treatment.
Fig. 7: FOXM1 mediated the upregulation of MCL-1 by BTZ and CFZ.
Fig. 8: OBX enhanced the antitumor activity of BTZ or CFZ in vivo.
Fig. 9: Histologic analysis of tumors for cellular proliferation and apoptosis.

Data availability

Raw MS data were uploaded to iProX. These data can be accessed at the following url: https://www.iprox.org/page/PSV023.html;?url=1596784470810tGwJ (keywords, sDU3).

References

  1. 1.

    Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14:417–33.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Zhuang J, Shirazi F, Singh RK, Kuiatse I, Wang H, Lee HC, et al. Ubiquitin-activating enzyme inhibition induces an unfolded protein response and overcomes drug resistance in myeloma. Blood. 2019;133:1572–84.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Dou QP, Zonder JA. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets. 2014;14:517–36.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Steele JM. Carfilzomib: a new proteasome inhibitor for relapsed or refractory multiple myeloma. J Oncol Pharm Pr. 2013;19:348–54.

    CAS  Article  Google Scholar 

  5. 5.

    McBride A, Klaus JO, Stockerl-Goldstein K. Carfilzomib: a second-generation proteasome inhibitor for the treatment of multiple myeloma. Am J Health Syst Pharm. 2015;72:353–60.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Tsakiri EN, Terpos E, Papanagnou ED, Kastritis E, Brieudes V, Halabalaki M, et al. Milder degenerative effects of Carfilzomib vs. Bortezomib in the Drosophila model: a link to clinical adverse events. Sci Rep. 2017;7:17802.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Okazuka K, Ishida T. Proteasome inhibitors for multiple myeloma. Jpn J Clin Oncol. 2018;48:785–93.

    Article  PubMed  Google Scholar 

  8. 8.

    Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer. 2015;121:664–72.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Waqar SN, Morgensztern D. Treatment advances in small cell lung cancer (SCLC). Pharm Ther. 2017;180:16–23.

    CAS  Article  Google Scholar 

  10. 10.

    Morabito A, Carillio G, Daniele G, Piccirillo MC, Montanino A, Costanzo R, et al. Treatment of small cell lung cancer. Crit Rev Oncol Hematol. 2014;91:257–70.

    Article  PubMed  Google Scholar 

  11. 11.

    Lara PN Jr., Chansky K, Davies AM, Franklin WA, Gumerlock PH, Guaglianone PP, et al. Bortezomib (PS-341) in relapsed or refractory extensive stage small cell lung cancer: a Southwest Oncology Group phase II trial (S0327). J Thorac Oncol. 2006;1:996–1001.

    Article  PubMed  Google Scholar 

  12. 12.

    Baker AF, Hanke NT, Sands BJ, Carbajal L, Anderl JL, Garland LL. Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models. J Exp Clin Cancer Res. 2014;33:111.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Arnold SM, Chansky K, Leggas M, Thompson MA, Villano JL, Hamm J, et al. Phase 1b trial of proteasome inhibitor carfilzomib with irinotecan in lung cancer and other irinotecan-sensitive malignancies that have progressed on prior therapy (Onyx IST reference number: CAR-IST-553). Investig N. Drugs. 2017;35:608–15.

    CAS  Article  Google Scholar 

  14. 14.

    Shi W, Li K, Song L, Liu M, Wang Y, Liu W, et al. Transcription factor response elements on tip: a sensitive approach for large-scale endogenous transcription factor quantitative identification. Anal Chem. 2016;88:11990–4.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ding C, Chan DW, Liu W, Liu M, Li D, Song L, et al. Proteome-wide profiling of activated transcription factors with a concatenated tandem array of transcription factor response elements. Proc Natl Acad Sci U S A. 2013;110:6771–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Feng J, Ding C, Qiu N, Ni X, Zhan D, Liu W, et al. Firmiana: towards a one-stop proteomic cloud platform for data processing and analysis. Nat Biotechnol. 2017;35:409–12.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Wang H, Hong B, Li X, Deng K, Li H, Yan Lui VW, et al. JQ1 synergizes with the Bcl-2 inhibitor ABT-263 against MYCN-amplified small cell lung cancer. Oncotarget. 2017;8:86312–24.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hu CJ, Wang B, Tang B, Chen BJ, Xiao YF, Qin Y, et al. The FOXM1-induced resistance to oxaliplatin is partially mediated by its novel target gene Mcl-1 in gastric cancer cells. Biochim Biophys Acta. 2015;1849:290–9.

    CAS  Article  Google Scholar 

  19. 19.

    Lodhi N, Tulin AV. PARP1 genomics: chromatin immunoprecipitation approach using anti-PARP1 antibody (ChIP and ChIP-seq). Methods Mol Biol. 2011;780:191–208.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Hong B, Wang H, Deng K, Wang W, Dai H, Yan Lui VW, et al. Combination treatment of RAD001 and BEZ235 exhibits synergistic antitumor activity via down-regulation of p-4E-BP1/Mcl-1 in small cell lung cancer. Oncotarget. 2017;8:106486–98.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Langer CJ, Albert I, Ross HJ, Kovacs P, Blakely LJ, Pajkos G, et al. Randomized phase II study of carboplatin and etoposide with or without obatoclax mesylate in extensive-stage small cell lung cancer. Lung Cancer. 2014;85:420–8.

    Article  PubMed  Google Scholar 

  23. 23.

    Chiappori AA, Schreeder MT, Moezi MM, Stephenson JJ, Blakely J, Salgia R, et al. A phase I trial of pan-Bcl-2 antagonist obatoclax administered as a 3-h or a 24-h infusion in combination with carboplatin and etoposide in patients with extensive-stage small cell lung cancer. Br J Cancer. 2012;106:839–45.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Mojsa B, Lassot I, Desagher S. Mcl-1 ubiquitination: unique regulation of an essential survival protein. Cells. 2014;3:418–37.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Harrison LR, Micha D, Brandenburg M, Simpson KL, Morrow CJ, Denneny O, et al. Hypoxic human cancer cells are sensitized to BH-3 mimetic-induced apoptosis via downregulation of the Bcl-2 protein Mcl-1. J Clin Investig. 2011;121:1075–87.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Bhattacharyya A, Chattopadhyay R, Hall EH, Mebrahtu ST, Ernst PB, Crowe SE. Mechanism of hypoxia-inducible factor 1 alpha-mediated Mcl1 regulation in Helicobacter pylori-infected human gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1177–86.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Dasmahapatra G, Lembersky D, Son MP, Patel H, Peterson D, Attkisson E, et al. Obatoclax interacts synergistically with the irreversible proteasome inhibitor carfilzomib in GC- and ABC-DLBCL cells in vitro and in vivo. Mol Cancer Ther. 2012;11:1122–32.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A. 2007;104:19512–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Paik PK, Rudin CM, Brown A, Rizvi NA, Takebe N, Travis W, et al. A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother Pharmacol. 2010;66:1079–85.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Nandi D, Cheema PS, Jaiswal N, Nag A. FoxM1: repurposing an oncogene as a biomarker. Semin Cancer Biol. 2018;52:74–84.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Lamothe B, Wierda WG, Keating MJ, Gandhi V. Carfilzomib triggers cell death in chronic lymphocytic leukemia by inducing proapoptotic and endoplasmic reticulum stress responses. Clin Cancer Res. 2016;22:4712–26.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hu J, Dang N, Menu E, De Bruyne E, Xu D, Van Camp B, et al. Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition. Blood. 2012;119:826–37.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 2015;66:129–43.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Jin F, Ma T, Guan H, Yang ZH, Liu XD, Wang Y, et al. Inhibitory effect of uranyl nitrate on DNA double-strand break repair by depression of a set of proteins in the homologous recombination pathway. Toxicol Res. 2017;6:711–8.

    CAS  Article  Google Scholar 

  35. 35.

    Wu B, Wang H, Zhang L, Sun C, Li H, Jiang C, et al. High expression of RAD18 in glioma induces radiotherapy resistance via down-regulating P53 expression. Biomed Pharmacother. 2019;112:108555.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Numbers: 81672647, 81872438, 81502632, 81372214, and 81972191), Natural Science Foundation of Anhui Province (Grant Number: 1608085MH179), Science and Technology Major Project of Anhui Province (Grant Number: 18030801140) and 100-Talent Program of Chinese Academy of Sciences. A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province.

Author information

Affiliations

Authors

Contributions

BH, WCL, and CD designed the study. YPY, BH, WHS, KD, and XLL performed the experiments. BH, YPY, WHS, HL, XTL, CD, and WCL analyzed and interpreted the data. YPY, BH and WHS wrote the manuscript. VWYL, WCL, and CD critically commented and edited the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Chen Ding or Bo Hong or Wen-chu Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, Yp., Shi, Wh., Deng, K. et al. Combinations of proteasome inhibitors with obatoclax are effective for small cell lung cancer. Acta Pharmacol Sin (2020). https://doi.org/10.1038/s41401-020-00544-w

Download citation

Keywords

  • small cell lung cancer
  • obatoclax
  • bortezomib
  • carfilzomib
  • MCL-1
  • apoptosis
  • FOXM1
  • proteomics analysis

Search

Quick links