Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Minimal contribution of IP3R2 in cardiac differentiation and derived ventricular-like myocytes from human embryonic stem cells


Type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) regulates the intracellular Ca2+ release from endoplasmic reticulum in human embryonic stem cells (hESCs), cardiovascular progenitor cells (CVPCs), and mammalian cardiomyocytes. However, the role of IP3R2 in human cardiac development is unknown and its function in mammalian cardiomyocytes is controversial. hESC-derived cardiomyocytes have unique merits in disease modeling, cell therapy, and drug screening. Therefore, understanding the role of IP3R2 in the generation and function of human cardiomyocytes would be valuable for the application of hESC-derived cardiomyocytes. In the current study, we investigated the role of IP3R2 in the differentiation of hESCs to cardiomyocytes and in the hESC-derived cardiomyocytes. By using IP3R2 knockout (IP3R2KO) hESCs, we showed that IP3R2KO did not affect the self-renewal of hESCs as well as the differentiation ability of hESCs into CVPCs and cardiomyocytes. Furthermore, we demonstrated the ventricular-like myocyte characteristics of hESC-derived cardiomyocytes. Under the α1-adrenergic stimulation by phenylephrine (10 μmol/L), the amplitude and maximum rate of depolarization of action potential (AP) were slightly affected in the IP3R2KO hESC-derived cardiomyocytes at differentiation day 90, whereas the other parameters of APs and the Ca2+ transients did not show significant changes compared with these in the wide-type ones. These results demonstrate that IP3R2 has minimal contribution to the differentiation and function of human cardiomyocytes derived from hESCs, thus provide the new knowledge to the function of IP3R2 in the generation of human cardiac lineage cells and in the early cardiomyocytes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The expression pattern of IP3R2 during cardiomyocyte differentiation of hESCs.
Fig. 2: The comparison of self-renewal properties of undifferentiated wt, IP3R2KO-6, and IP3R2KO-12 hESCs.
Fig. 3: Effects of IP3R2 deficiency on the differentiation of hESCs into CVPCs and cardiomyocytes.
Fig. 4: Effects of IP3R2 deficiency on the APs of wt and IP3R2KO hESC-derived cardiomyocytes at differentiation day 90 with or without phenylephrine (PE) treatment.
Fig. 5: Effects of IP3R2 deficiency on Ca2+ transients of wt and IP3R2KO hESC-derived cardiomyocytes at differentiation day 90 with or without phenylephrine (PE) treatment.


  1. 1.

    Clapham DE. Calcium signaling. Cell. 2007;131:1047–58.

    CAS  PubMed  Google Scholar 

  2. 2.

    Carafoli E, Krebs J. Why Calcium? How calcium became the best communicator. J Biol Chem. 2016;291:20849–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Slusarski DC, Pelegri F. Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol. 2007;307:1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Webb SE, Miller AL. Calcium signalling during embryonic development. Nat Rev Mol Cell Biol. 2003;4:539–51.

    CAS  PubMed  Google Scholar 

  5. 5.

    Fearnley CJ, Roderick HL, Bootman MD. Calcium signaling in cardiac myocytes. Cold Spring Harb Perspect Biol. 2011;3:a004242.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Marks AR. Calcium and the heart: a question of life and death. J Clin Invest. 2003;111:597–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12:101–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Spater D, Hansson EM, Zangi L, Chien KR. How to make a cardiomyocyte. Development. 2014;141:4418–31.

    CAS  PubMed  Google Scholar 

  9. 9.

    He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res. 2003;93:32–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Ma Z, Wang J, Loskill P, Huebsch N, Koo S, Svedlund FL, et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun. 2015;6:7413.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lee J, Shao NY, Paik DT, Wu H, Guo H, Termglinchan V, et al. SETD7 drives cardiac lineage commitment through stage-specific transcriptional activation. Cell Stem Cell. 2018;22:428–44.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 2013;127:1677–91.

    CAS  PubMed  Google Scholar 

  14. 14.

    Wang J, Liu M, Wu Q, Li Q, Gao L, Jiang Y, et al. Human embryonic stem cell-derived cardiovascular progenitors repair infarcted hearts through modulation of macrophages via activation of signal transducer and activator of transcription 6. Antioxid Redox Signal. 2019;31:369–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Zhu K, Wu Q, Ni C, Zhang P, Zhong Z, Wu Y, et al. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates. Circ Res. 2018;122:958–69.

    CAS  PubMed  Google Scholar 

  16. 16.

    Fu JD, Li J, Tweedie D, Yu HM, Chen L, Wang R, et al. Crucial role of the sarcoplasmic reticulum in the developmental regulation of Ca2+ transients and contraction in cardiomyocytes derived from embryonic stem cells. FASEB J. 2006;20:181–3.

    CAS  PubMed  Google Scholar 

  17. 17.

    Fu JD, Yang HT. Developmental regulation of intracellular calcium homeostasis in early cardiac myocytes. Sheng Li Xue Bao. 2006;58:95–103.

    CAS  PubMed  Google Scholar 

  18. 18.

    Guo A, Yang HT. Ca2+ removal mechanisms in mouse embryonic stem cell-derived cardiomyocytes. Am J Physiol Cell Physiol. 2009;297:C732–41.

    CAS  PubMed  Google Scholar 

  19. 19.

    Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim Biophys Acta. 2013;1833:2542–59.

    CAS  PubMed  Google Scholar 

  20. 20.

    Yang HT, Tweedie D, Wang S, Guia A, Vinogradova T, Bogdanov K, et al. The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development. Proc Natl Acad Sci USA. 2002;99:9225–30.

    CAS  PubMed  Google Scholar 

  21. 21.

    Yanagida E, Shoji S, Hirayama Y, Yoshikawa F, Otsu K, Uematsu H, et al. Functional expression of Ca2+ signaling pathways in mouse embryonic stem cells. Cell Calcium. 2004;36:135–46.

    CAS  PubMed  Google Scholar 

  22. 22.

    Huang JJ, Wang YJ, Zhang M, Zhang P, Liang H, Bai HJ, et al. Functional expression of the Ca(2+) signaling machinery in human embryonic stem cells. Acta Pharmacol Sin. 2017;38:1663–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Liang J, Wang YJ, Tang Y, Cao N, Wang J, Yang HT. Type 3 inositol 1,4,5-trisphosphate receptor negatively regulates apoptosis during mouse embryonic stem cell differentiation. Cell Death Differ. 2010;17:1141–54.

    CAS  PubMed  Google Scholar 

  24. 24.

    Uchida K, Aramaki M, Nakazawa M, Yamagishi C, Makino S, Fukuda K, et al. Gene knock-outs of inositol 1,4,5-trisphosphate receptors types 1 and 2 result in perturbation of cardiogenesis. PLoS One. 2010;5:e12500.

  25. 25.

    Mikoshiba K. Role of IP receptor in development. Cell Calcium. 2011;49:331–40.

    CAS  PubMed  Google Scholar 

  26. 26.

    Wang YJ, Huang J, Liu W, Kou X, Tang H, Wang H, et al. IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin-NFATc3-Etv2 pathway. J Mol Cell Biol. 2017;9:274–88.

    CAS  PubMed  Google Scholar 

  27. 27.

    Perez PJ, Ramos-Franco J, Fill M, Mignery GA. Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J Biol Chem. 1997;272:23961–9.

    CAS  PubMed  Google Scholar 

  28. 28.

    Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, et al. Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol. 2000;10:939–42.

    CAS  PubMed  Google Scholar 

  29. 29.

    Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA. IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008;294:H596–604.

    CAS  PubMed  Google Scholar 

  30. 30.

    Ju YK, Liu J, Lee BH, Lai D, Woodcock EA, Lei M, et al. Distribution and functional role of inositol 1,4,5-trisphosphate receptors in mouse sinoatrial node. Circ Res. 2011;109:848–57.

    CAS  PubMed  Google Scholar 

  31. 31.

    Cooley N, Ouyang K, McMullen JR, Kiriazis H, Sheikh F, Wu W, et al. No contribution of IP3R2 to disease phenotype in models of dilated cardiomyopathy or pressure overload hypertrophy. Circ Heart Fail. 2013;6:318–25.

    CAS  PubMed  Google Scholar 

  32. 32.

    Li X, Zima AV, Sheikh F, Blatter LA, Chen J. Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ Res. 2005;96:1274–81.

    CAS  PubMed  Google Scholar 

  33. 33.

    Signore S, Sorrentino A, Ferreira-Martins J, Kannappan R, Shafaie M, Del Ben F, et al. Inositol 1, 4, 5-trisphosphate receptors and human left ventricular myocytes. Circulation. 2013;128:1286–97.

    CAS  PubMed  Google Scholar 

  34. 34.

    Higazi DR, Fearnley CJ, Drawnel FM, Talasila A, Corps EM, Ritter O, et al. Endothelin-1-stimulated InsP3-induced Ca2+ release is a nexus for hypertrophic signaling in cardiac myocytes. Mol Cell. 2009;33:472–82.

    CAS  PubMed  Google Scholar 

  35. 35.

    Nakayama H, Bodi I, Maillet M, DeSantiago J, Domeier TL, Mikoshiba K, et al. The IP3 receptor regulates cardiac hypertrophy in response to select stimuli. Circ Res. 2010;107:659–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Tompkins JD, Jung M, Chen CY, Lin Z, Ye J, Godatha S, et al. Mapping human pluripotent-to-cardiomyocyte differentiation: methylomes, transcriptomes, and exon DNA methylation “memories”. EBioMedicine. 2016;4:74–85.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Huang J, Zhang M, Zhang P, Liang H, Ouyang K, Yang HT. Coupling switch of P2Y-IP3 receptors mediates differential Ca2+ signaling in human embryonic stem cells and derived cardiovascular progenitor cells. Purinergic Signal. 2016;12:465–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Soh BS, Ng SY, Wu H, Buac K, Park JH, Lian X, et al. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells. Nat Commun. 2016;7:10774.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Mazzuca MQ, Khalil RA. Vascular endothelin receptor type B: structure, function and dysregulation in vascular disease. Biochem Pharmacol. 2012;84:147–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Deliu E, Brailoiu GC, Mallilankaraman K, Wang H, Madesh M, Undieh AS, et al. Intracellular endothelin type B receptor-driven Ca2+ signal elicits nitric oxide production in endothelial cells. J Biol Chem. 2012;287:41023–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Cao N, Liang H, Yang HT. Generation, expansion, and differentiation of cardiovascular progenitor cells from human pluripotent stem cells. Methods Mol Biol. 2015;1212:113–25.

    PubMed  Google Scholar 

  42. 42.

    Bai HJ, Zhang P, Ma L, Liang H, Wei G, Yang HT. SMYD2 drives mesendodermal differentiation of human embryonic stem cells through mediating the transcriptional activation of key mesendodermal genes. Stem Cells. 2019;37:1401–15.

  43. 43.

    Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA. 2012;109:E1848–57.

    CAS  PubMed  Google Scholar 

  44. 44.

    Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cao N, Liang H, Huang J, Wang J, Chen Y, Chen Z, et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013;23:1119–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ouyang K, Leandro Gomez-Amaro R, Stachura DL, Tang H, Peng X, Fang X, et al. Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. Nat Commun. 2014;5:4814.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Fu X, Toh WS, Liu H, Lu K, Li M, Cao T. Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods. 2011;17:927–37.

    PubMed  Google Scholar 

  48. 48.

    Poon EN, Luo XL, Webb SE, Yan B, Zhao R, Wu SCM, et al. The cell surface marker CD36 selectively identifies matured, mitochondria-rich hPSC-cardiomyocytes. Cell Res. 2020;30:626–9.

  49. 49.

    Fu JD, Yu HM, Wang R, Liang J, Yang HT. Developmental regulation of intracellular calcium transients during cardiomyocyte differentiation of mouse embryonic stem cells. Acta Pharmacol Sin. 2006;27:901–10.

    CAS  PubMed  Google Scholar 

  50. 50.

    Monfredi O, Maltsev VA, Lakatta EG. Modern concepts concerning the origin of the heartbeat. Physiology (Bethesda). 2013;28:74–92.

    CAS  Google Scholar 

  51. 51.

    O’Connell TD, Jensen BC, Baker AJ, Simpson PC. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev. 2014;66:308–33.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kohi M, Yang HT, Endoh M. Myocardial alpha 1A-adrenoceptor subtypes in rabbit: differentiation by a selective antagonist, HV723. Eur J Pharmacol. 1993;250:95–101.

    CAS  PubMed  Google Scholar 

  53. 53.

    Satin J, Itzhaki I, Rapoport S, Schroder EA, Izu L, Arbel G, et al. Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells. 2008;26:1961–72.

    CAS  PubMed  Google Scholar 

  54. 54.

    Resende RR, Adhikari A, da Costa JL, Lorencon E, Ladeira MS, Guatimosim S, et al. Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. Biochim Biophys Acta. 2010;1803:246–60.

    CAS  PubMed  Google Scholar 

  55. 55.

    Garcia MI, Boehning D. Cardiac inositol 1,4,5-trisphosphate receptors. Biochim Biophys Acta Mol Cell Res. 2017;1864:907–14.

    CAS  PubMed  Google Scholar 

  56. 56.

    Berridge MJ, Bootman MD, Lipp P. Calcium−a life and death signal. Nature. 1998;395:645–8.

    CAS  PubMed  Google Scholar 

  57. 57.

    Luo M, Anderson ME. Mechanisms of altered Ca2+ handling in heart failure. Circ Res. 2013;113:690–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Yang F, Huang L, Tso A, Wang H, Cui L, Lin L, et al. Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability. PLoS Genet. 2020;16:e1008739.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wobus AM, Wallukat G, Hescheler J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation. 1991;48:173–82.

    CAS  PubMed  Google Scholar 

  60. 60.

    Lorenzen-Schmidt I, Schmid-Schonbein GW, Giles WR, McCulloch AD, Chien S, Omens JH. Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shear. Cell Biochem Biophys. 2006;46:113–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Xiang Y, Rybin VO, Steinberg SF, Kobilka B. Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem. 2002;277:34280–6.

    CAS  PubMed  Google Scholar 

  62. 62.

    Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res. 2000;87:1095–102.

    CAS  PubMed  Google Scholar 

  63. 63.

    van der Heyden MA, Wijnhoven TJ, Opthof T. Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels. Cardiovasc Res. 2005;65:28–39.

    PubMed  Google Scholar 

  64. 64.

    Liu QY, Karpinski E, Pang PK. Changes in alpha 1-adrenoceptor coupling to Ca2+ channels during development in rat heart. FEBS Lett. 1994;338:234–8.

    CAS  PubMed  Google Scholar 

  65. 65.

    Itzhaki I, Rapoport S, Huber I, Mizrahi I, Zwi-Dantsis L, Arbel G, et al. Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS One. 2011;6:e18037.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Hund TJ, Ziman AP, Lederer WJ, Mohler PJ. The cardiac IP3 receptor: uncovering the role of “the other” calcium-release channel. J Mol Cell Cardiol. 2008;45:159–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Hirose M, Stuyvers B, Dun W, Ter Keurs H, Boyden PA. Wide long lasting perinuclear Ca2+ release events generated by an interaction between ryanodine and IP3 receptors in canine Purkinje cells. J Mol Cell Cardiol. 2008;45:176–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Prakriya M, Lewis RS. Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol. 2001;536:3–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107:2733–40.

    CAS  PubMed  Google Scholar 

  70. 70.

    Goldberg AT, Bond BR, Mukherjee R, New RB, Zellner JL, Crawford FA Jr, et al. Endothelin receptor pathway in human left ventricular myocytes: relation to contractility. Ann Thorac Surg. 2000;69:711–5. discussion 716.

    CAS  PubMed  Google Scholar 

  71. 71.

    Milano CA, Dolber PC, Rockman HA, Bond RA, Venable ME, Allen LF, et al. Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA. 1994;91:10109–13.

    CAS  PubMed  Google Scholar 

Download references


This work was supported by grants from National Key R&D Program of China (2017YFA0103700 and 2016YFC1301204 to HTY), National Natural Science Foundation of China (81520108004, 81470422 to HTY), the Strategic Priority Research Program of the CAS (No. XDA16010201 to HTY), Shanghai Natural Science Foundation (17ZR1435500 to JJH), and the Shenzhen Basic Research Foundation (KQJSCX20170330155020267). The authors thank WiCell Research Institute for providing the H7 hESCs, Dr. Hua-jun Bai (Shanghai Institute of Nutrition and Health) for the assistance in hESC culture, and Prof. Ping Liang from Zhejiang University for the constructive discussion and suggestions.

Author information




HTY and PZ contributed to the concept and experiment design; PZ, JJH, HL and YJW contributed to the data collection; PZ, HTY, KFOY and MLL contributed to the data analysis; HTY and PZ contributed to the data interpretation and manuscript writing; HTY approved the manuscript and provided the funding support.

Corresponding author

Correspondence to Huang-tian Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Huang, Jj., Ou-yang, Kf. et al. Minimal contribution of IP3R2 in cardiac differentiation and derived ventricular-like myocytes from human embryonic stem cells. Acta Pharmacol Sin 41, 1576–1586 (2020).

Download citation


  • IP3R2
  • human embryonic stem cells
  • differentiation
  • cardiovascular progenitor cells
  • cardiomyocytes
  • function

Further reading


Quick links