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Tissue-specific relaxin-2 is differentially associated with the
presence/size of an arterial aneurysm and the severity of
atherosclerotic disease in humans
Konstantinos Papoutsis1, Alkistis Kapelouzou2, Georgios Georgiopoulos3, Christos Kontogiannis4, Christos Kourek3,
Konstantinos S Mylonas3, Nikolaos Patelis1, Dennis V Cokkinos2, Ioannis Karavokyros1 and Sotirios Georgopoulos1

Circulating or tissue-related biomarkers are of clinical value for risk stratification in patients with abdominal aortic aneurysms.
Relaxin-2 (RL2) has been linked to the presence and size of arterial aneurysms, and to the extent of atherosclerosis in human
subjects. Here, we assessed the expression levels of RL2 in aneurysmal (AA, n= 16) and atherosclerotic (ATH, n= 22) arteries, and
established the correlation between RL2 levels and the presence/size of AA and the clinical severity of atherosclerosis. The
expression levels of metalloproteinases (MMPs) and endothelial nitric oxide synthetase (eNOS) were also detected for correlations
with different phenotypes of atherosclerosis and AA. Temporal artery biopsy specimens (n= 6) and abdominal aortic tissues
harvested from accident victims during autopsy (n= 10) were used as controls. Quantitative tissue biomarker analysis revealed that
tissue-specific RL2 was increased in patients with larger or symptomatic AA compared to subjects with atherosclerotic disease and
healthy controls. In situ RL2 levels were proportional to the size and the severity of aneurysmatic disease, and were substantially
elevated in patients with symptomatic aneurysm of any diameter or asymptomatic aneurysm of a diameter >350% of that of the
normal artery. In contrast, tissue RL2 was inversely associated with the clinical severity of atherosclerotic lesions. Correlation
between RL2 and MMP2 was different between ATH1 and ATH2, depending on atherosclerosis grade. Overall, tissue RL2 is
differentially associated with discrete phenotypes of arterial disease and might exert multipotent biological effects on vascular wall
integrity and remodeling in human subjects.
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INTRODUCTION
Abdominal aortic aneurysms (AAAs) represent the most widely
studied lesions among arterial aneurysms (AAs). Although the
prevalence and incidence rates of AAAs have decreased during
the past two decades [1], early detection is crucial for timely and
successful management because the morbidity [2] and mortality
[3–6] are high in patients with a ruptured AAA (rAAA) who
manage to reach the hospital alive in order to undergo emergency
open or endovascular repair. Biomarkers potentially related to
aneurysm formation and expansion have been investigated and
reviewed twice [7, 8] in order to augment timely diagnoses, but
currently, there is no clinical applicability for any of the studied
biomarkers due to either no association or a weak association with
the natural history of aneurysms. Our group has recently
discovered a positive correlation between the serum levels of
the novel biomarker relaxin-2 (RL2) and the presence/size of AAs
in human subjects [9]. RL2, a nonglycosylated peptide with a
structural and post-translational processing resemblance to insulin
and insulin-like growth factors (ILGF), was initially identified as a

reproductive hormone implicated in vasoregulation during
pregnancy [10]. Ever since the discovery [11] of its receptor,
known today as relaxin family peptide receptor-1 (RFXP1),
research on RL2 has expanded on various tissues and systems,
including cardiovascular tissues such as arteries, veins, and the
atrial and ventricular myocardium [12–14].
We hypothesized [9] that serum RL2 is related to the presence

and size of an AA based on the knowledge that RL2 upregulates
the synthesis of matrix metalloproteinase (MMP)-2 and MMP9 [15–
17], which are MMPs with a stronger association with AAs [18, 19].
Meanwhile, existing knowledge suggests that RL2 upregulates the
synthesis of nitric oxide (NO) [12, 20–22]. Reduction in
endothelium-derived NO is, along with oxidative stress, the
common pathway of action of all major risk factors leading to
endothelial dysfunction and atherosclerosis [23–27], and our
group demonstrated recently [9] that serum RL2 is inversely
correlated with the severity of atherosclerotic disease.
In the present study, we aimed to verify and expand the

findings of our preliminary study for serum RL2 [9] by
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investigating the levels of tissue-specific RL2 in aneurysmal (AA)
and atherosclerotic (ATH) arteries and establishing a correlation of
tissue-specific RL2 levels with the presence/size of AA and the
clinical severity of atherosclerosis. Comparisons were made
between the AA and ATH artery groups and the control artery
group, including temporal artery biopsy specimens (TAB) and
abdominal aortic tissues harvested from accident victims during
autopsy (AG). Moreover, we carried out tissue-specific measure-
ments of MMP2, MMP9 and endothelial nitric oxide synthetase
(eNOS) in the aforementioned groups of arterial specimens to
investigate further correlations with different phenotypes of
atherosclerosis and AA.

MATERIALS AND METHODS
Study population
In this study, a total of 53 subjects were enrolled. Our
interventional groups consisted of 21 patients who had open
surgery for different forms of atherosclerotic disease and 16
patients who had open surgery for an AA. These 37 patients
underwent surgery at Laiko Hospital in Athens, Greece and along
with 6 patients who underwent TAB in the same center were the
same subjects originally recruited in our preliminary study [9]. Ten
accident victims who underwent a postmortem autopsy (AG) in
the Department of Anatomy, Medical School of Athens, Kapo-
distrian University, were further enrolled to serve as controls. The
study was conducted in accordance with the Declaration of
Helsinki. Apart from the accident victims, all subjects provided
informed consent for the use of their clinical and laboratory results
for scientific purposes. Data collection and processing remained
anonymous.

Phenotypes per group
Study groups and subcategorization along with baseline char-
acteristics have been previously described [9]. In brief, our study
population was allocated to the following groups:

AA group. The AA group included patients (69.73 ± 8.69, mean ±
SD; age; male sex) with AAAs (n= 13), thoracic aortic aneurysms
(TAA) (n= 1), internal iliac aneurysms (n= 1), or popliteal
aneurysms (n= 1). Further subcategorization with respect to the
size and clinical presentation of aneurysmatic disease was
implemented as described previously [9].

(1) Aneurysm group 1 (AA1) (n= 5; male sex): patients with an
asymptomatic aneurysm of a diameter 250%–300% of that
of the normal artery.

(2) Aneurysm group 2 (AA2) (n= 4, male sex): patients with an
asymptomatic aneurysm of a diameter 300%–350% of that
of normal artery.

(3) Aneurysm group 3 (AA3) (n= 7; male sex): patients with
either a symptomatic aneurysm of any diameter or an
asymptomatic aneurysm of a diameter >350% of that of
normal artery.

ATH group. The ATH group included a total of 22 patients (69.52
± 14.14, mean ± SD; age; male/female sex): 12 patients with
extracranial carotid artery disease and 10 patients with peripheral
arterial disease (PAD). Subsequently, we further categorized
patients according to the clinical severity of underlying athero-
sclerosis into three groups:

(1) Atherosclerosis group 1 (ATH1, n= 10; male/female sex):
patients with moderate functional consequences [asympto-
matic internal carotid stenosis >70% or claudication
(Rutherford stage 3)].

(2) Atherosclerosis group 2 (ATH2, n= 6; male/female sex):

patients with severe functional consequences [transient
ischemic attack or rest leg pain (Rutherford stage 4)].

(3) Atherosclerosis group 3 (ATH3, n= 5; male/female sex):
patients with permanent disability [stroke or tissue loss
(Rutherford stage 5–6)].

Details about diagnostic modalities and diagnostic approaches
in classifying the severity of atherosclerosis can be found
elsewhere [9].

TAB and AG control groups. The TAB group (n= 6) (69.67 ± 11.31,
means ± SD; age; male/female sex) had a normal pathology report
of temporal arteritis and had no history or clinical signs of AA, an
extracranial carotid artery, or PAD. The AG group (n= 10) (43.5 ±
3.4, means ± SD; age; male/female sex) included accident victims
who were autopsied within 24 h postmortem without AA found
during autopsy and without a history of atherosclerotic disease. As
stated in our previous report [9], the AA, ATH, and TAB study
groups were well matched for age, gender, medications, medical
comorbidities, smoking status, and renal and liver biochemistry.
AG group subjects were substantially younger and did not have
any medical comorbidities.

Tissue collection and preservation
Arterial specimens from all subjects were collected with an aseptic
technique at room temperature. In the AA group, part of the
aneurysmatic sac, consisting of all arterial layers, was collected
during open repair of the aneurysm. In the ATH group, only the
atherosclerotic plaque was collected during carotid endarterect-
omy or the lower extremity revascularization procedure. In the TA
group, part of the temporal artery, consisting of all arterial layers,
was collected during TAB. In the AG group, part of the infrarenal
abdominal aorta, consisting of all arterial layers, was collected
during autopsy. The samples were flushed with normal saline and
immediately stabilized with a commercially available tissue
reagent (Allprotect Tissue Reagent, QIAGEN GmbH, D-40724
Hilden, Germany). Stabilized tissues were transported within the
time and temperature limits set by the manufacturer and stored at
−20 °C until analysis was performed.

Analysis of atherosclerotic and aneurysm tissues
Immunohistochemical staining. Ten serial paraffin sections of 5
μm thickness along the arterial specimens were mounted on
polylysine-coated microscope slides and allowed to dry overnight,
pending immunohistological staining. Sections were deparaffi-
nized in xylene and a series of graded ethanol and finally stained
with the appropriate antibodies (a) rabbit anti-human Relaxin-2
(Meridian, Life Science, Inc., UK) (working concentration: 5 µg/mL),
(b) rabbit anti-human MMP2 (MBL, USA) (working concentration:
15 µg/mL), (c) rabbit anti-human MMP9 (Thermo Fisher Scientific,
USA) (working concentration: 10 µg/mL), (d) eNOS (Thermo Fisher
Scientific, USA) (working concentration: 2 µg/mL). The Zytochem
Plus Detection Kit (Germany) was used for the development as
described by the manufacturer.

qRT-PCR. Total RNA was isolated from acquired samples using
the Tri Reagent (Sigma, Saint Louis, MO, USA), according to the
manufacturer’s protocol [28]. cDNA was synthesized by RT (M-
MLV, reverse transcriptase; Sigma), and real-time quantitative
polymerase chain reaction was performed by using SYBR Green
(Invitrogen, Life Technologies, NY, USA), according to the
manufacturer’s protocol. The following primers synthesized by
Eurofins Genomic (Ebersberg Germany) were used: (a) RL2:
Forward: 5′-AGAAATTGTGCCATCCTTCATC-3′, Reverse: 5′-AGGGTTA
ACTTCAGCTCCTGTG-3′; (b) MMP2: Forward: 5′-ATGACGATGAGCTA
TGGACCTT-3′, Reverse: 5′- CTGTTGTACTCCTTGCCATTGA-3′; (c) MM
P9: Forward: 5′-ACTTTGACAGCGACAAGAAGTG-3′, Reverse: 5′-GGC
ACTGAGGAATGATCTAAGC-3′; (d) eNOS: Forward: 5′-CATCACCAG
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GAAGAAGACCTTT-3′, Reverse: 5′-ATACAGGATTGTCGCCTTCACT-3′;
(e) β-actin: Forward: 5′-GATCAAGATCATTGCTCCTCCT-3′, Reverse:
5′-ATACTCCTGCTTGCTGATCCAC-3′.
The thermal cycling protocol was as follows: 10 min at 95 °C,

followed by 40 cycles of 95 °C for 15 s and then 60 °C for 1 min.
Negative PCR controls were run to verify the absence of genomic
DNA contamination (no reverse transcription control). Fluores-
cence was recorded at regular intervals following the 60 °C
annealing/extension segment of the PCR, and real-time data
showing the relative fluorescence versus cycle number were
analyzed. Because of the paucity of good internal PCR controls for
tissue specimens, RL2, MMP2, MMP9, and eNOS expression (for
consistency of measurement) was determined from a ΔCt value
[expression= 2(−ΔΔCt)] where ΔCt was derived for each indivi-
dual specimen and calculated by subtracting the mean Ct value
for all targets measured from the individual Ct value of a given
PCR target, as previously described. The results were then
reported as the mean ± SEM for each peptide (RL2, MMP2,
MMP9, and eNOS) measured in tissue.

Statistical analysis
Data are presented as the mean ± standard deviation (mean ± SD).
Statistical significance between groups was calculated using
Tukey's multiple comparison test. Correlation between measured
parameters was assessed by Pearson analysis. Differences were
considered significant when a two-tailed P < 0.05 was calculated.
All statistical calculations were performed using GraphPad Prism,
version 4.03 (GraphPad, Inc., CA, USA).

RESULTS
Immunohistochemical tissue biomarkers-qualitative analysis
Tissue biomarkers are presented in Fig. 1. Our qualitative analysis
showed that MMPs and eNOS were colocalized to residual elastic

fiber fragments in aneurysmal tissue and in atherosclerotic
plaques. Interestingly, we found that Relaxin-2 lined endothelial
cells (ECs) in all groups; the tunica media was composed of
alternate layers of elastic lamellae in both AA and ATH.
Metalloproteinase staining was also found in endothelial cells of
both AA and ATH. We also found thickening of the tunica media
marked with disarrangement of smooth muscle cells (in all
groups). In both the AA and ATH groups, we observed an
accumulation of amorphous material and plasma membrane
rupture, while in the TAB group, MMP staining showed a diffusion
of the endothelial lining bound by tight junctions. Finally, eNOS
staining showed features of endothelial cell vacuolation (all
groups) and plasma membrane rupture in the AA group.

Expression tissue mRNA levels of RL2, MMP2, MMP9, and eNOS in
all groups
In all three ATH subgroups, the RL2 level was significantly higher
than those of MMP2, MMP9, and eNOS (P < 0.05) (Fig. 2). Similarly,
RL2 tissue levels were increased in comparison to MMP2, MMP9,
and eNOS levels (P < 0.05). In TAB patients, RL2 tissue levels were
increased compared to those of MMPs and eNOS (P < 0.05 for all).
There was no significant difference between RL2 and MMPs and
eNOS in the AG group. All data of the mRNA tissue levels are
presented in Supplementary Table 1 for the AA and ATH groups
and Supplementary Table 1 for the TAB and AG groups.

Differences in tissue RL2, MMPs, and eNOS mRNA levels across
increasing severities of aneurysmatic and atherosclerotic disease
Across increasing severity of the ATH group, MMP2, MMP9, and
eNOS expression decreased in patients with a more severe
presentation of atherosclerotic disease (P < 0.05) (Fig. 2a). In
contrast, within the aneurysmatic disease (subgroup AA1 to AA3),
RL2, MMP2, and MMP9 as well as eNOS tissue levels increased (P <
0.05) (Fig. 2b).

Fig. 1 Immunohistochemistry staining of specimens from patients with an aneurysm, patients with atherosclerosis and patients under
investigation for temporal arteritis. Representative immunopositive images from the 3 groups with AA and ATH; TAB showed a brown color
for Relaxin 2, MMP2, MMP9 and eNOS. IEL inner elastic lamina, EC endothelial cells, TM tunica media.
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Comparison of RL2, MMPs, and eNOS mRNA levels between all
study groups
RL2, MMPs, and eNOS mRNA levels were substantially higher in
the AA group than in the ATH, TAB, and AG groups (Supplemental
graphs a, b, c and d). There were no significant differences
between RL2, MMP2, and eNOS levels in the ATH and TAB groups.
Only MMP9 was significantly higher in the ATH group than in the
TAB group. The AG group had significantly lower levels of RL2,
MMPs, and eNOS mRNA than the other groups had.

Comparison of RL2, MMPs, and eNOS mRNA levels between
subcategorized study groups
In the ATH subgroups, further statistical analysis (Fig. 2a–d)
revealed that RL2, MMPs, and eNOS mRNA levels were signifi-
cantly higher in the ATH1 and ATH2 subgroups than in the TAB
group, with the exception of RL2 mRNA levels in the
ATH2 subgroup, which were not significantly different from TAB.
mRNA levels were lower or not significantly different in patients
with clinically severe atherosclerotic disease (ATH3 subgroup)
compared to the TAB group. Finally, the AG group had
significantly lower mRNA levels than all subgroups had.
Further statistical analysis revealed that only in arterial speci-

mens from larger or symptomatic aneurysms (AA2 and AA3
groups) were the RL2, MMPs, and eNOS mRNA levels consistently
higher than those in the ATH subgroups or in the TAB and AG
groups. Specimens from smaller aneurysms (AA1 group) had
significantly higher RL2, MMPs, and eNOS mRNA levels only
compared to the levels in patients with clinically severe
atherosclerotic disease (ATH3 subgroup) and to the levels in the
AG group and generally had significantly lower or not significantly
different levels compared to those in less clinically advanced
atherosclerotic disease (ATH1 and ATH2 subgroups) and in the
TAB group.

Correlation between RL2 and MMPs and eNOS in the AA and ATH
groups
In patients with mild atherosclerosis (group ATH1), RL2 was
positively correlated with eNOS and inversely correlated with

MMP2, whereas it was positively associated with MMP2 and eNOS
in moderate atherosclerotic disease (ATH2) (Table 1, upper right).
In severe atherosclerosis (ATH3), no correlations were found
between RL2 and MMP2, MMP9, and eNOS (Table 1, upper right).
With respect to AAs, RL2 was positively associated with eNOS and
inversely correlated with both MMP2 and MMP9 only in patients
with mild dilatation (AA1 group). In contrast, no significant
correlations of RL2 were found in patients with moderate and
severe arterial aneurysmatic disease (AA2 and AA3) (Table 1, lower
left). Furthermore, RL2 was positively correlated with MMP2,
MMP9, and eNOS in the TAB group. In the AG group, RL2 did not
correlate with either MMPs or eNOS (P > 0.05).

DISCUSSION
The principal finding of this study is that tissue-specific RL2 is
increased in patients with a larger or symptomatic AA in
comparison to subjects with atherosclerotic disease and to
healthy controls. Notably, in situ RL2 levels were proportionally
increased according to the size and severity of aneurysmatic
disease and were substantially elevated in patients with a
symptomatic aneurysm of any diameter or an asymptomatic
aneurysm of a diameter >350% of that of the normal artery in
comparison to (a) patients with asymptomatic or smaller AAs, (b)
subjects with atherosclerosis, and (c) control subjects. On the
other hand, an inverse association of tissue RL2 with the clinical
severity of atherosclerotic lesions was observed. These findings
are generally consistent with our previously published data on
serum RL2 [9], and to the best of our knowledge, this is the first
report on the correlation of tissue-specific RL2 mRNA levels in
human subjects with aneurysms and atherosclerosis. Further to
our previous work, our current study indicated that tissue MMPs
and eNOS fluctuate with exactly the same pattern as RL2 in
various phenotypes of both aneurysmatic and atherosclerotic
disease, and importantly, RL2 was not related to MMPs in
moderate and severe aneurysmatic and atherosclerotic disease,
suggesting an independent role of this multipotent molecule on
vascular wall integrity and remodeling.

Fig. 2 mRNA tissue levels of all subgroups in (a) RL2; (b) MMP2; (c) MMP9; (d) eNOS. The green line indicates a significant difference
between subgroups (ATH 1,2,3; AA 1,2,3) and groups (TAB, AG). # indicates a significant difference between TAB or AG and ATH; $ indicates a
significant difference between TAB or AG and AA.
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AAs are characterized by structural alterations of the vascular
wall resulting, in part, from the degradation of collagen and elastin
fibers. These changes are associated with inflammatory infiltrates
[29] and excessive production of MMPs [30, 31], which are
assumed to orchestrate the widespread matrix destruction. An
association between AA and MMPs has been described in both
AAA [32, 33] and PAD [34, 35]. MMP transcripts expressed
physiologically at low levels increase rapidly in the presence of
inflammation-associated vascular remodeling. Notably, increased
expression of MMPs has been observed by other authors in
human aneurysm tissue [31] and has been linked to extracellular
matrix degradation and increased risk of rupture in response to
distending intra-arterial pressure [36, 37]. Previous studies have
shown a complementary role of MMP2 and MMP9 in aneurysmal
dilatation. In brief, MMP2 primarily acts as a collagenase that
initiates cleavage of the collagen triple helix, and subsequently,
single chains are subject to degradation by MMP9 [38, 39]. In our
study, we found that increased expression of both MMPs is related
to a more severe phenotype of AA disease, even though previous
studies have reported contradicting conclusions on the clinical
utility of circulating plasma [40] and serum [41] levels of MMP2
and MMP9. In addition, we observed an inverse correlation of RL2
with MMPs in the early stages of AA. However, the association of
MMPs with RL2 in advanced stages was not noted; this suggests
that further mechanisms are involved.
Endothelial cells express eNOS to serve as an important source

of NO, a potent vasodilator and inhibitor of inflammation, platelet
aggregation, and smooth muscle cell proliferation [42].

Interestingly, eNOS gene polymorphisms have been associated
with vascular diseases [43]; two recent meta-analyses have
identified the T786C polymorphism of eNOS as a predictor for
the development of intracranial aneurysms in the cerebral
vascular system [44, 45], and various polymorphisms of eNOS
have been linked to AAA [46–48]. Our findings of increased eNOS
levels in larger aneurysms are in accordance with a recent animal
study [49], in which increased eNOS activity reduced smooth
muscle α-actin and upregulated MMPs during flow-induced
intracranial aneurysm formation. However, experiments in mice
have shown that eNOS deficiency results in an increased incidence
of AAA formation [40], and Aoki et al. [50] showed that eNOS
suppresses cerebral aneurysm formation by reducing hemody-
namic stress to arterial walls. Currently, there is no clinical utility of
eNOS as a biomarker for predicting the natural history of human
aneurysms, which are a multifactorial disease, and the contra-
dicting evidence suggests that eNOS may play a lesser role in
aneurysm formation and progression than other factors.
Destabilization of plaques is implicated as a clinical manifes-

tations of atherosclerotic disease [51, 52]. Among various
proteinases, MMP2 and MMP9 have been shown to be the
predominant ones secreted by T lymphocytes and macrophages
[53, 54] across atherosclerotic plaque development [55]. MMP2
is constitutively expressed in all human vascular cells [56], but
plaques express increased MMP2 compared to that in normal
vessels, especially unstable ones [57]. Overall, MMP2 levels are
increased in patients with atherosclerotic [58, 59] PAD,
especially in combination with type II diabetes [60] or acute
coronary syndromes [61, 62]. Additionally, circulating MMP9
levels are increased in patients with atherosclerosis [62], acute
coronary syndromes [62, 63], and type II diabetes [64]. There is
also substantial evidence for a link between heightened MMP9
and plaque vulnerability [65, 66] through facilitation of base-
ment membrane breakdown, smooth muscle cell migration,
plaque neovascularization, and inflammatory cell infiltration
[67, 68].
Indeed, in our current study, increased levels of MMP2 and

MMP9 were related to the severity of atherosclerotic disease, while
the RL2 level was inversely associated with atherosclerotic burden.
Our group has recently shown serum RL2 to be increased in the
early clinical stages of atherosclerosis and decreased in more
advanced stages of atherosclerotic disease [9], and it was
hypothesized that RL2 upregulation represents a form of
protective mechanism; however, it was unclear whether this early
increase was actually beneficial. The inverse correlation of RL2
with MMP2 in mild atherosclerosis and the positive association
with eNOS in moderate atherosclerosis is suggestive of a
beneficial effect. Enhanced NO bioavailability through eNOS
upregulation and decreased expression of H2S generating
enzymes might increase plaque stability and integrity [69, 70]. It
remains unclear why this protective mechanism is ameliorated in
advanced stages of atherosclerosis, but our findings provide
further evidence of potential therapeutic use of RL2 in athero-
sclerotic disease, as other investigators have recently demon-
strated [71].
There is a good size of evidence that RL2 increases NO synthesis

in both an acute and a delayed fashion, although the actual
mechanism and whether this is related directly or indirectly to
RFXP1 is not clear [72, 73]. The activity and expression of not only
eNOS [74–77] but also inducible-NOS (iNOS) [74, 76, 78–84] and
neuronal-NOS (nNOS) is increased by RL2. Due to the production
of NO and activation of guanyl cyclase, NOS activation by RL2
leads to an increase in cyclic guanyl monophosphate (cGMP)
[78, 79, 83, 85]. Based on activation of NOS and cGMP, NO
production by RL2 can be further enhanced by an increase in
eNOS activity by Akt (Protein Kinase B) phosphorylation [86],
upregulation of iNOS activity following stimulation of nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κΒ)-

Table 1. Correlation matrix of assessed biomarkers tissue mRNA levels
in each aneurysm and atherosclerosis group separately, depending on
the severity of atherosclerosis.

Down-left illustrated the AA groups. Upright illustrated the ATH groups.
−1 represents the AA1 or ATH1 group; −2 represent the AA2 or ATH2
group; −3 represent AA3 or ATH3 group.
R values indicate Pearson’s correlation coefficients.
Significant association between two tissue biomarkers is presented with
green color; no statistical significance presented with red color; while the
minus symbol (−) in green boxes indicates an inverse association.
AA aneurysm group, ATH atherosclerosis group, RL2 relaxin-2, MMP matrix
metalloproteinase, eNOS endothelial nitric oxide synthetase
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controlled transcription [79, 81], and finally by increased activity of
eNOS, following activation of the endothelin B (ETB) receptor by
increased activity of MMP2 and MMP9 by RL2 [15]. Interestingly,
inhibition of NF-κΒ-mediated transcription reduces the RL2-related
increase in MMP9 expression and activity [86], suggesting a
relationship between the effects of RL2 upon MMPs and NO [12].
Furthermore, RL2 can decrease the expression of tissue inhibitors
of MMPs (TIMPs) [87–89], and recently, it was shown that the
known pathways of RL2/RFXP1 signaling [including activation of
phosphoinositide 3-kinase (PI3K), Akt, protein kinase C (PKC)-ζ,
and extracellular signal-regulated protein kinases 1 and 2 (ERK1/
2)] are connected with the increased expression of mRNA for
MMP9 [4]. These insights could be useful for investigating the
utility of RL2 in the clinical setting [12].
Certain limitations should be acknowledged in our study. We

enrolled four relatively small groups of patients, which might have
hampered the identification of associations. Furthermore, our
study is limited by the fact that the AG group was not matched
with other groups for age and comorbidities, while in the ATH
group, subjects presented with heterogeneous arterial patholo-
gies. These limitations warrant caution when interpreting the
results and drawing conclusions. In our study, we included data
from autopsy subjects, as Gupta et al. [90] have shown that under
conditions similar to ours, autopsy specimens are reliable for
conduction molecular estimations. Importantly, no definite con-
clusions can be made regarding the underlying mechanisms of
RL2 in vascular diseases. Contemporary literature does not provide
mechanistic data on possible RL2 effects on AAs. Consequently,
the potential applicability of RL2 as a novel therapeutic target
merits further investigation. A postulation may be advanced that
RL2 represents a feedback protective mechanism to counteract an
ongoing detrimental process.
In conclusion, tissue-specific RL2 is higher in patients with an

AA, showing a positive relationship with the size of the
aneurysmatic dilatation. Levels of RL2 are also inversely correlated
with the severity of atherosclerotic disease. Future studies with
larger cohorts are warranted to verify and expand our results with
the ultimate aim to reveal possible etiopathogenetic backgrounds
of atherosclerosis and aneurysm formation.
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