Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways


Renal fibrosis is considered as the pathway of almost all kinds of chronic kidney diseases (CKD) to the end stage of renal diseases (ESRD). Ganoderic acid (GA) is a group of lanostane triterpenes isolated from Ganoderma lucidum, which has shown a variety of pharmacological activities. In this study we investigated whether GA exerted antirenal fibrosis effect in a unilateral ureteral obstruction (UUO) mouse model. After UUO surgery, the mice were treated with GA (3.125, 12.5, and 50 mg· kg−1 ·d1, ip) for 7 or 14 days. Then the mice were sacrificed for collecting blood and kidneys. We showed that GA treatment dose-dependently attenuated UUO-induced tubular injury and renal fibrosis; GA (50 mg· kg−1 ·d1) significantly ameliorated renal disfunction during fibrosis progression. We further revealed that GA treatment inhibited the extracellular matrix (ECM) deposition in the kidney by suppressing the expression of fibronectin, mainly through hindering the over activation of TGF-β/Smad signaling. On the other hand, GA treatment significantly decreased the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and vimentin, and upregulated E-cadherin expression in the kidney, suggesting the suppression of tubular epithelial-mesenchymal transition (EMT) partially via inhibiting both TGF-β/Smad and MAPK (ERK, JNK, p38) signaling pathways. The inhibitory effects of GA on TGF-β/Smad and MAPK signaling pathways were confirmed in TGF-β1-stimulated HK-2 cell model. GA-A, a GA monomer, was identified as a potent inhibitor on renal fibrosis in vitro. These data demonstrate that GA or GA-A might be developed as a potential therapeutic agent in the treatment of renal fibrosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: GA hindered tubular injury and renal fibrosis induced by UUO.
Fig. 2: GA hindered renal tubular EMT progression in the UUO mouse model.
Fig. 3: GA inhibited the TGF-β/Smad and MAPK signaling pathways in vivo.
Fig. 4: GA inhibited the TGF-β/Smad and MAPK signaling pathways in HK-2 cells.
Fig. 5: Inhibitory effect of the GA monomers GA-A, GA-B, and GA-C on fibrosis in vitro.
Fig. 6: Schematic diagram of the proposed underlying mechanisms involved in the antirenal fibrotic activity of GA.


  1. 1.

    Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol. 2010;21:1819–34.

    CAS  PubMed  Google Scholar 

  2. 2.

    Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6:643–56.

    PubMed  Google Scholar 

  3. 3.

    Farris AB, Colvin RB. Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens. 2012;21:289–300.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    De Nicola L, Minutolo R. Worldwide growing epidemic of CKD: fact or fiction? Kidney Int. 2016;90:482–4.

    PubMed  Google Scholar 

  5. 5.

    Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB, et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet. 2017;390:1888–917.

    PubMed  Google Scholar 

  6. 6.

    Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379:815–22.

    PubMed  Google Scholar 

  7. 7.

    Nordio M, Limido A, Maggiore U, Nichelatti M, Postorino M, Quintaliani G, et al. Survival in patients treated by long-term dialysis compared with the general population. Am J Kidney Dis. 2012;59:819–28.

    PubMed  Google Scholar 

  8. 8.

    Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389:1238–52.

    PubMed  Google Scholar 

  9. 9.

    Breyer MD, Susztak K. The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov. 2016;15:568–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Chen DQ, Feng YL, Cao G, Zhao YY. Natural products as a source for antifibrosis therapy. Trends Pharmacol Sci. 2018;39:937–52.

    CAS  PubMed  Google Scholar 

  11. 11.

    Hsu CL, Yen GC. Ganoderic acid and lucidenic acid (Triterpenoid). Enzymes. 2014;36:33–56.

    CAS  PubMed  Google Scholar 

  12. 12.

    Gill BS, Navgeet, Kumar S. Ganoderma lucidum targeting lung cancer signaling: a review. Tumor Biol 2017;39:1010428317707437.

    Google Scholar 

  13. 13.

    Zhong D, Wang H, Liu M, Li X, Huang M, Zhou H, et al. Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress. Sci Rep 2015;5:16910.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    He J, Sun Y, Jia Y, Geng X, Chen R, Zhou H, et al. Ganoderma triterpenes protect against hyperhomocysteinemia induced endothelial-mesenchymal transition via TGF-beta signaling inhibition. Front Physiol. 2019;10:192.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Su L, Liu L, Jia Y, Lei L, Liu J, Zhu S, et al. Ganoderma triterpenes retard renal cyst development by downregulating Ras/MAPK signaling and promoting cell differentiation. Kidney Int. 2017;92:1404–18.

    CAS  PubMed  Google Scholar 

  16. 16.

    Zhong D, Xie Z, Huang B, Zhu S, Wang G, Zhou H, et al. Ganoderma lucidum polysaccharide peptide alleviates hepatoteatosis via modulating bile acid metabolism dependent on FXR-SHP/FGF. Cell Physiol Biochem. 2018;49:1163–79.

    PubMed  Google Scholar 

  17. 17.

    Lu J, Qin JZ, Chen P, Chen X, Zhang YZ, Zhao SJ. Quality difference study of six varieties of ganoderma lucidum with different origins. Front Pharmacol. 2012;3:57.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Jiang J, Grieb B, Thyagarajan A, Sliva D. Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-kappaB signaling. Int J Mol Med. 2008;21:577–84.

    CAS  PubMed  Google Scholar 

  19. 19.

    Zhang X, Xiao C, Liu H. Ganoderic acid A protects rat H9c2 cardiomyocytes from hypoxia-induced injury via up-regulating miR-182-5p. Cell Physiol Biochem. 2018;50:2086–96.

    CAS  PubMed  Google Scholar 

  20. 20.

    Cao FR, Feng L, Ye LH, Wang LS, Xiao BX, Tao X, et al. Ganoderic acid A metabolites and their metabolic kinetics. Front Pharmacol. 2017;8:101.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lin DM, Wang SZ, Luo HJ, Lin ZX, Lin SQ. Rapid separation of ganoderic acid from the extraction by-products of Ganoderma lucidum. Fujian Med J. 2018;40:135–8.

    Google Scholar 

  22. 22.

    Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009;75:1145–52.

    PubMed  Google Scholar 

  23. 23.

    Bao YW, Yuan Y, Chen JH, Lin WQ. Kidney disease models: tools to identify mechanisms and potential therapeutic targets. Zool Res. 2018;39:72–86.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Jia Y, He J, Wang L, Su L, Lei L, Huang W, et al. Dapagliflozin aggravates renal injury via promoting gluconeogenesis in db/db mice. Cell Physiol Biochem. 2018;45:1747–58.

    CAS  PubMed  Google Scholar 

  25. 25.

    Wang W, Li F, Sun Y, Lei L, Zhou H, Lei T, et al. Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling. FASEB J. 2015;29:1551–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wang W, Geng X, Lei L, Jia Y, Li Y, Zhou H, et al. Aquaporin-3 deficiency slows cyst enlargement in experimental mouse models of autosomal dominant polycystic kidney disease. FASEB J. 2019.

  27. 27.

    Pillai TG, John M, Sara Thomas G. Prevention of cisplatin induced nephrotoxicity by terpenes isolated from Ganoderma lucidum occurring in southern parts of India. Exp Toxicol Pathol. 2011;63:157–60.

    CAS  PubMed  Google Scholar 

  28. 28.

    Lan HY. Smad7 as a therapeutic agent for chronic kidney diseases. Front Biosci. 2008;13:4984–92.

    CAS  PubMed  Google Scholar 

  29. 29.

    Watanabe H, de Caestecker MP, Yamada Y. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem. 2001;276:14466–73.

    CAS  PubMed  Google Scholar 

  30. 30.

    Hung TW, Tsai JP, Lin SH, Lee CH, Hsieh YH, Chang HR. Pentraxin 3 activates JNK signaling and regulates the epithelial-to-mesenchymal transition in renal fibrosis. Cell Physiol Biochem. 2016;40:1029–38.

    CAS  PubMed  Google Scholar 

  31. 31.

    Stambe C, Atkins RC, Tesch GH, Masaki T, Schreiner GF, Nikolic-Paterson DJ. The role of p38alpha mitogen-activated protein kinase activation in renal fibrosis. J Am Soc Nephrol. 2004;15:370–9.

    CAS  PubMed  Google Scholar 

  32. 32.

    Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q, et al. Wnt/beta-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol. 2018;29:182–93.

    CAS  PubMed  Google Scholar 

  33. 33.

    Chen Z, Sun J, Li T, Liu Y, Gao S, Zhi X, et al. Iron chelator-induced up-regulation of Ndrg1 inhibits proliferation and EMT process by targeting Wnt/beta-catenin pathway in colon cancer cells. Biochem Biophys Res Commun. 2018;506:114–21.

    CAS  PubMed  Google Scholar 

  34. 34.

    Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, et al. LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/beta-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res. 2018;37:225.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Chi B, Wang S, Bi S, Qin W, Wu D, Luo Z, et al. Effects of ganoderic acid A on lipopolysaccharide-induced proinflammatory cytokine release from primary mouse microglia cultures. Exp Ther Med. 2018;15:847–53.

    CAS  PubMed  Google Scholar 

  36. 36.

    Chang Y, Kong R. Ganoderic acid A alleviates hypoxia-induced apoptosis, autophagy, and inflammation in rat neural stem cells through the PI3K/AKT/mTOR pathways. Phytother Res. 2019;33:1448–56.

    CAS  PubMed  Google Scholar 

  37. 37.

    Ai J, Nie J, He J, Guo Q, Li M, Lei Y, et al. GQ5 hinders renal fibrosis in obstructive nephropathy by selectively inhibiting TGF-beta-induced smad3 phosphorylation. J Am Soc Nephrol. 2015;26:1827–38.

    CAS  PubMed  Google Scholar 

  38. 38.

    Wang W, Huang XR, Li AG, Liu F, Li JH, Truong LD, et al. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol. 2005;16:1371–83.

    CAS  PubMed  Google Scholar 

  39. 39.

    Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004;15:1–12.

    CAS  PubMed  Google Scholar 

  40. 40.

    Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Investig. 2003;112:1776–84.

    CAS  PubMed  Google Scholar 

  41. 41.

    Rastaldi MP. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol. 2006;19:407–12.

    CAS  PubMed  Google Scholar 

  42. 42.

    Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol. 2010;21:212–22.

    CAS  PubMed  Google Scholar 

  43. 43.

    Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21:998–1009.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–38.

    CAS  PubMed  Google Scholar 

  45. 45.

    Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Investig. 2003;112:1486–94.

    CAS  PubMed  Google Scholar 

  46. 46.

    Li Y, Shen Y, Li M, Su D, Xu W, Liang X, et al. Inhibitory effects of peroxisome proliferator-activated receptor gamma agonists on collagen IV production in podocytes. Mol Cell Biochem. 2015;405:233–41.

    CAS  PubMed  Google Scholar 

  47. 47.

    Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, et al. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol. 2005;16:667–75.

    CAS  PubMed  Google Scholar 

  48. 48.

    Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3 beta inactivation. Science. 2008;320:667–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, et al. Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 2001;61:4222–8.

    CAS  PubMed  Google Scholar 

  50. 50.

    Lv ZM, Wang Q, Wan Q, Lin JG, Hu MS, Liu YX, et al. The role of the p38 MAPK signaling pathway in high glucose-induced epithelial-mesenchymal transition of cultured human renal tubular epithelial cells. PLoS One. 2011;6:e22806.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Pat B, Yang T, Kong C, Watters D, Johnson DW, Gobe G. Activation of ERK in renal fibrosis after unilateral ureteral obstruction: modulation by antioxidants. Kidney Int. 2005;67:931–43.

    CAS  PubMed  Google Scholar 

  52. 52.

    Li Z, Liu X, Wang B, Nie Y, Wen J, Wang Q, et al. Pirfenidone suppresses MAPK signalling pathway to reverse epithelial-mesenchymal transition and renal fibrosis. Nephrology. 2017;22:589–97.

    CAS  PubMed  Google Scholar 

  53. 53.

    Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, Ten Dijke P. TGF-beta-induced endothelial-mesenchymal transition in fibrotic diseases. Int J Mol Sci. 2017;18:2157.

    PubMed Central  Google Scholar 

  54. 54.

    Syed V. TGF-beta signaling in cancer. J Cell Biochem. 2016;117:1279–87.

    CAS  PubMed  Google Scholar 

  55. 55.

    MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-beta family signaling in connective tissue and skeletal diseases. CSH Perspect Biol. 2017;9:a022269.

    Google Scholar 

  56. 56.

    Radwan FF, Hossain A, God JM, Leaphart N, Elvington M, Nagarkatti M, et al. Reduction of myeloid-derived suppressor cells and lymphoma growth by a natural triterpenoid. J Cell Biochem. 2015;116:102–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Das A, Miller R, Lee P, Holden CA, Lindhorst SM, Jaboin J, et al. A novel component from citrus, ginger, and mushroom family exhibits antitumor activity on human meningioma cells through suppressing the Wnt/beta-catenin signaling pathway. Tumor Biol. 2015;36:7027–34.

    CAS  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (grants 81620108029, 81330074, 81261160507, 81974083, 81170632 and 81770738) and the Beijing Natural Science Foundation (grant 7172113).

Author information




XQG and BXY designed the research. XQG, AM, JZH, YLJ, LW, GYS, ML, and JHR performed the research. XQG, JHR, and SQL analyzed the data. XQG and BXY wrote the manuscript. HZ and BXY revised the manuscript.

Corresponding author

Correspondence to Bao-xue Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Ma, A., He, J. et al. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol Sin 41, 670–677 (2020).

Download citation


  • chronic kidney disease
  • renal fibrosis
  • ganoderic acid
  • epithelial-mesenchymal transition
  • TGF-β
  • UUO mice
  • HK-2 cells (human proximal tubular epithelial cells)

Further reading