Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-κB signaling pathways


Increasing studies show that inflammatory processes may be involved in depressive disorders. Nuclear factor erythroid-2 related factor 2 (Nrf2) modulates tissue microglial M1 phenotypic changes to the M2 phenotype, which is implicated in protection against inflammatory diseases. We have reported that the adipose-derived mesenchymal stem cells (ADSCs) display anti-inflammatory activity. In this study we explored whether the mechanism of anti-inflammatory activity of ADSCs was related to Nrf2. ADSCs were isolated from mouse fat pads and intravenously administered to chronic mild stress (CMS)-exposed C57BL/6 mice at the dose of 1 × 106 once a week for 3 weeks. We showed that ADSC administration significantly remedied CMS-induced depressive-like behaviors in sucrose preference test, tail suspension test, and forced swim test accompanied by suppressing microglial activation and the expression of inflammatory factors including MCP-1, TNF-α, IL-1β, and IL-6. Furthermore, ADSC administration promoted both the expression of BDNF and TrkB, and promoted Nrf2/HO-1 signaling but suppressed TLR4/NF-κB signaling in brain tissue. In order to elucidate the role of Nrf2/HO-1 signaling in ADSC-caused neuroprotection, Nrf2-modified ADSCs were cocultured with BV2 microglial cells, then exposed to lipopolysaccharide (LPS). Downregulation of Nrf2 in ADSCs decreased the protective effects of ADSCs against LPS-induced microglial activation and M1 polarization. Nrf2 overexpression in ADSCs markedly suppressed LPS-induced TLR4 and NF-κB expression in microglial cells. These results suggest a possible antidepressive mechanism correlated with microglial polarization for anti-inflammatory agents, which may provide a new microglia-targeted strategy for depression therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characterization of adipose-derived mesenchymal stem cells (ADSCs).
Fig. 2: ADSC treatment reversed chronic mild stress (CMS)-induced depressive-like behaviors.
Fig. 3: ADSC treatment reversed CMS-induced inflammatory factor expression and hippocampal microglial activation.
Fig. 4: Nrf2 and TLR4 played roles in the ADSC-mediated protective effect on neurons.
Fig. 5: The expression of Nrf2 and HO-1 in ADSCs after transfection with an Nrf2 overexpression vector or siRNA targeting Nrf2 (siNrf2).
Fig. 6: ADSC and BV2 cell cocultures showed that Nrf2 plays a role in ADSC-mediated protective effects against LPS-induced inflammatory factor expression in BV2 microglial cells.


  1. 1.

    Wong ML, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci. 2001;2:343–51.

    CAS  PubMed  Google Scholar 

  2. 2.

    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Aguilar-Valles A, Kim J, Jung S, Woodside B, Luheshi GN. Role of brain transmigrating neutrophils in depression-like behavior during systemic infection. Mol Psychiatry. 2014;19:599–606.

    CAS  PubMed  Google Scholar 

  5. 5.

    Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38:637–58.

    CAS  PubMed  Google Scholar 

  6. 6.

    Preston TC, Shelton RC. Treatment resistant depression: strategies for primary care. Curr Psychiatry Rep. 2013;15:370.

    PubMed  Google Scholar 

  7. 7.

    Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.

    CAS  PubMed  Google Scholar 

  8. 8.

    Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol. 2009;85:352–70.

    CAS  PubMed  Google Scholar 

  9. 9.

    Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–7.

    PubMed  Google Scholar 

  10. 10.

    Park J, Min JS, Kim B, Chae UB, Yun JW, Choi MS, et al. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappaB pathways. Neurosci Lett. 2015;584:191–6.

    CAS  PubMed  Google Scholar 

  11. 11.

    Zhao Q, Xie X, Fan Y, Zhang J, Jiang W, Wu X, et al. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment. Sci Rep. 2015;5:9513.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4:e525.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lu Y, Yang YY, Zhou MW, Liu N, Xing HY, Liu XX, et al. Ketogenic diet attenuates oxidative stress and inflammation after spinal cord injury by activating Nrf2 and suppressing the NF-kappaB signaling pathways. Neurosci Lett. 2018;683:13–8.

    CAS  PubMed  Google Scholar 

  14. 14.

    Paraswani N, Thoh M, Bhilwade HN, Ghosh A. Early antioxidant responses via the concerted activation of NF-kappaB and Nrf2 characterize the gamma-radiation-induced adaptive response in quiescent human peripheral blood mononuclear cells. Mutat Res. 2018;831:50–61.

    CAS  Google Scholar 

  15. 15.

    Nakano Y, Shimazawa M, Ojino K, Izawa H, Takeuchi H, Inoue Y, et al. Toll-like receptor 4 inhibitor protects against retinal ganglion cell damage induced by optic nerve crush in mice. J Pharmacol Sci. 2017;133:176–83.

    CAS  PubMed  Google Scholar 

  16. 16.

    Yang MY, Yu QL, Huang YS, Yang G. Neuroprotective effects of andrographolide derivative CX-10 in transient focal ischemia in rat: Involvement of Nrf2/AE and TLR/NF-kappaB signaling. Pharmacol Res. 2019;144:227–34.

    CAS  PubMed  Google Scholar 

  17. 17.

    Feng G, Sun B, Liu HX, Liu QH, Zhao L, Wang TL. EphA2 antagonism alleviates LPS-induced acute lung injury via Nrf2/HO-1, TLR4/MyD88 and RhoA/ROCK pathways. Int Immunopharmacol. 2019;72:176–85.

    CAS  PubMed  Google Scholar 

  18. 18.

    Wang Y, Huang Y, Xu Y, Ruan W, Wang H, Zhang Y, et al. A dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization. Antioxid Redox Signal. 2018;28:141–63.

    CAS  PubMed  Google Scholar 

  19. 19.

    Kang HS, Choi SH, Kim BS, Choi JY, Park GB, Kwon TG, et al. Advanced properties of urine derived stem cells compared to adipose tissue derived stem cells in terms of cell proliferation, immune modulation and multi differentiation. J Korean Med Sci. 2015;30:1764–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Guo J, Guo S, Wang Y, Yu Y. Promoting potential of adipose derived stem cells on peripheral nerve regeneration. Mol Med Rep. 2017;16:7297–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Xie S, Lu F, Han J, Tao K, Wang H, Simental A, et al. Efficient generation of functional Schwann cells from adipose-derived stem cells in defined conditions. Cell Cycle. 2017;16:841–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Jahromi M, Razavi S, Amirpour N, Khosravizadeh Z. Paroxetine can enhance neurogenesis during neurogenic differentiation of human adipose-derived stem cells. Avicenna J Med Biotechnol. 2016;8:152–8.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wang LJ, Liu LP, Gu XL, Wang M, Liu LM. Implantation of adipose-derived stem cells cures the optic nerve injury on rats through inhibiting the expression of inflammation factors in the TLR4 signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22:1196–202.

    PubMed  Google Scholar 

  24. 24.

    Jin R, Shen M, Yu L, Wang X, Lin X. Adipose-derived stem cells suppress inflammation induced by IL-1beta through down-regulation of P2X7R mediated by miR-373 in chondrocytes of osteoarthritis. Mol Cells. 2017;40:222–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhang J, Xie X, Tang M, Zhang B, Zhao Q, Han Y, et al. Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice. Brain Behav Immun. 2017;66:111–24.

    CAS  PubMed  Google Scholar 

  26. 26.

    Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85:367–70.

    CAS  Google Scholar 

  27. 27.

    Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977;229:327–36.

    CAS  PubMed  Google Scholar 

  28. 28.

    Jia KK, Ding H, Yu HW, Dong TJ, Pan Y, Kong LD. Huanglian-Wendan decoction inhibits NF-kappaB/NLRP3 inflammasome activation in liver and brain of rats exposed to chronic unpredictable mild stress. Mediators Inflamm. 2018;2018:3093516.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Yang YC, Liu BS, Shen CC, Lin CH, Chiao MT, Cheng HC. Transplantation of adipose tissue-derived stem cells for treatment of focal cerebral ischemia. Curr Neurovasc Res. 2011;8:1–13.

    PubMed  Google Scholar 

  31. 31.

    Mattei D, Djodari-Irani A, Hadar R, Pelz A, de Cossio LF, Goetz T, et al. Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. Brain Behav Immun. 2014;38:175–84.

    CAS  PubMed  Google Scholar 

  32. 32.

    Lu L, Li X, Xu P, Zheng Y, Wang X. Tenuigenin down-regulates the release of nitric oxide, matrix metalloproteinase-9 and cytokines from lipopolysaccharide-stimulated microglia. Neurosci Lett. 2017;650:82–8.

    CAS  PubMed  Google Scholar 

  33. 33.

    Zhao H, Alam A, Chen Q, A Eusman M, Pal A, Eguchi S, et al. The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth. 2017;118:504–16.

    CAS  PubMed  Google Scholar 

  34. 34.

    Chong PN, Sangu M, Huat TJ, Reza F, Begum T, Yusoff AAM, et al. Trkb-IP3 pathway mediating neuroprotection in rat hippocampal neuronal cell culture following induction of kainic acid. Malays J Med Sci. 2018;25:28–45.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sun ZQ, Meng FH, Tu LX, Sun L. Myricetin attenuates the severity of seizures and neuroapoptosis in pentylenetetrazole kindled mice by regulating the BDNF-TrkB signaling pathway and modulating matrix metalloproteinase-9 and GABAA. Exp Ther Med. 2019;17:3083–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kohler O, Krogh J, Mors O, Benros ME. Inflammation in depression and the potential for anti-inflammatory treatment. Curr Neuropharmacol. 2016;14:732–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Jin M, Sheng W, Han L, He Q, Ji X, Liu K. Activation of BDNF-TrkB signaling pathway-regulated brain inflammation in pentylenetetrazole-induced seizures in zebrafish. Fish Shellfish Immunol. 2018;83:26–36.

    CAS  PubMed  Google Scholar 

  38. 38.

    Gao J, Xiong B, Zhang B, Li S, Huang N, Zhan G, et al. Sulforaphane alleviates lipopolysaccharide-induced spatial learning and memory dysfunction in mice: the role of BDNF-mTOR signaling pathway. Neuroscience. 2018;388:357–66.

    CAS  PubMed  Google Scholar 

  39. 39.

    Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron. 2003;38:899–914.

    CAS  PubMed  Google Scholar 

  40. 40.

    Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000;288:870–4.

    CAS  PubMed  Google Scholar 

  41. 41.

    Vieira TDS, Rugani JN, Nogueira PM, Torrecilhas AC, Gontijo CMF, Descoteaux A, et al. Intraspecies polymorphisms in the lipophosphoglycan of L. braziliensis differentially modulate macrophage activation via TLR4. Front Cell Infect Microbiol. 2019;9:240.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Yamaguchi R, Sakamoto A, Yamamoto T, Narahara S, Sugiuchi H, Yamaguchi Y. Differential regulation of IL-23 production in M1 macrophages by TIR8/SIGIRR through TLR4- or TLR7/8-mediated signaling. Cytokine. 2017;99:310–5.

  43. 43.

    Toshchakov V, Jones BW, Perera PY, Thomas K, Cody MJ, Zhang S, et al. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol. 2002;3:392–8.

    CAS  PubMed  Google Scholar 

  44. 44.

    Yang X, Chen S, Shao Z, Li Y, Wu H, Li X, et al. Apolipoprotein E deficiency exacerbates spinal cord injury in mice: inflammatory response and oxidative stress mediated by NF-kappaB signaling pathway. Front Cell Neurosci. 2018;12:142.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wen Z, Hou W, Wu W, Zhao Y, Dong X, Bai X, et al. 6’-O-galloylpaeoniflorin attenuates cerebral ischemia reperfusion-induced neuroinflammation and oxidative stress via PI3K/Akt/Nrf2 activation. Oxid Med Cell Longev. 2018;2018:8678267.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    MacDowell KS, Caso JR, Martin-Hernandez D, Moreno BM, Madrigal JLM, Mico JA, et al. The atypical antipsychotic paliperidone regulates endogenous antioxidant/anti-inflammatory pathways in rat models of acute and chronic restraint stress. Neurotherapeutics. 2016;13:833–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zhang L, Zhang J, You Z. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci. 2018;12:306.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Zhao Q, Wang Q, Wang J, Tang M, Huang S, Peng K, et al. Maternal immune activation-induced PPARgamma-dependent dysfunction of microglia associated with neurogenic impairment and aberrant postnatal behaviors in offspring. Neurobiol Dis. 2019;125:1–13.

    PubMed  Google Scholar 

  49. 49.

    Michel HE, Menze ET. Tetramethylpyrazine guards against cisplatin-induced nephrotoxicity in rats through inhibiting HMGB1/TLR4/NF-kappaB and activating Nrf2 and PPAR-gamma signaling pathways. Eur J Pharmacol. 2019;857:172422.

    CAS  PubMed  Google Scholar 

  50. 50.

    Tang W, Chen X, Liu H, Lv Q, Zou J, Shi Y, et al. Expression of Nrf2 promotes schwann cell-mediated sciatic nerve recovery in diabetic peripheral neuropathy. Cell Physiol Biochem. 2018;46:1879–94.

    CAS  PubMed  Google Scholar 

  51. 51.

    Yan J, Li J, Zhang L, Sun Y, Jiang J, Huang Y, et al. Nrf2 protects against acute lung injury and inflammation by modulating TLR4 and Akt signaling. Free Radic Biol Med. 2018;121:78–85.

    CAS  PubMed  Google Scholar 

  52. 52.

    Hsieh YH, Deng JS, Chang YS, Huang GJ. Ginsenoside Rh2 ameliorates lipopolysaccharide-induced acute lung injury by regulating the TLR4/PI3K/Akt/mTOR, Raf-1/MEK/ERK, and keap1/Nrf2/HO-1 signaling pathways in mice. Nutrients. 2018;10:1208–17.

    PubMed Central  Google Scholar 

Download references


This work was supported by grants from the National Natural Science Foundation of China (31771184).

Author information




HW, XW, and JLJ designed the study and wrote the protocols; XH, YW, and GQF managed the literature retrieval and performed the experimental work and data analysis; WJL, JD, and XW wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

Corresponding authors

Correspondence to Hao Wang or Jian-lin Ji or Xin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Fei, Gq., Liu, Wj. et al. Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-κB signaling pathways. Acta Pharmacol Sin 41, 612–619 (2020).

Download citation


  • ADSCs
  • Nrf2
  • TLR4
  • microglial
  • chronic mild stress

Further reading


Quick links