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Vascular endothelial dysfunction, a major mediator in diabetic
cardiomyopathy
Maura Knapp1, Xin Tu1 and Rongxue Wu1

Diabetes mellitus is currently a major public health problem. A common complication of diabetes is cardiac dysfunction, which is
recognized as a microvascular disease that leads to morbidity and mortality in diabetic patients. While ischemic events are
commonly observed in diabetic patients, the risk for developing heart failure is also increased, independent of the severity of
coronary artery disease and hypertension. This diabetes-associated clinical entity is considered a distinct disease process referred to
as “diabetic cardiomyopathy”. However, it is not clear how diabetes promotes cardiac dysfunction. Vascular endothelial dysfunction
is thought to be one of the key risk factors. The impact of diabetes on the endothelium involves several alterations, including
hyperglycemia, fatty acid oxidation, reduced nitric oxide (NO), oxidative stress, inflammatory activation, and altered barrier function.
The current review provides an update on mechanisms that specifically target endothelial dysfunction, which may lead to diabetic
cardiomyopathy.
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INTRODUCTION
Cardiovascular disease is a major cause of morbidity and mortality
in diabetic patients. It has long been established that diabetes
significantly increases the risk of cardiovascular disease, with
diabetic men being two times more likely to suffer from
congestive heart failure (CHF) than non-diabetic individuals and
diabetic women being five times more likely to develop CHF [1, 2].
In fact, 68% of deaths in type 2 diabetic patients are caused by
cardiac complications [3–6]. Interestingly, a subset of diabetic
patients develops left ventricular dysfunction in the absence of
coronary artery disease, hypertension, or vascular disease. This
observation, first made by Rubler et al. in 1972, is now known as
diabetic cardiomyopathy [7]. Currently, diabetic cardiomyopathy is
defined as ventricular dysfunction that occurs independently of
hypertension or myocardial ischemia in diabetic patients. It is
important to note, however, that diabetic cardiomyopathy rarely
exists without these features and that the presence of these
comorbidities does play a role in enhancing the complications
associated with the disease.
While diabetic cardiomyopathy is now recognized as a clinically

distinct entity, the mechanisms underlying its pathogenesis are
still poorly understood. In this review, we will look at evidence
regarding how diabetes-induced endothelial dysfunction med-
iates cardiac dysfunction. Specifically, we will focus on the
hyperglycemia-induced changes that occur in the vascular
endothelium during diabetes and how these changes may
contribute to the development of diabetic cardiomyopathy.
Several potential mechanisms that have been implicated in
endothelial dysfunction in diabetic cardiomyopathy will be
discussed.

Clinical manifestations of diabetic cardiomyopathy
Diabetic cardiomyopathy affects both type 1 and type 2 diabetic
patients and is characterized by a variety of functional and
structural changes in the heart. In early stages of the disease, left
ventricular diastolic dysfunction (LVDD) is the most prevalent
cardiac complication [8, 9]. Although previous reports using
Doppler echocardiography have estimated that LVDD affects
~40%–64% of asymptomatic diabetic patients [10], the emergence
of more direct and accurate measurements of diastolic function,
such as color M-mode and Doppler tissue imaging, have caused
these estimates to rise to as high as 75% [11]. Systolic dysfunction
is another characteristic of diabetic cardiomyopathy, although it
usually develops during the later stages of the disease after
diastolic dysfunction has been established [1, 12]. The develop-
ment of both diastolic and systolic dysfunction in diabetics can be
explained by hyperglycemia and hyperinsulinemia rather than by
obesity, high blood pressure, or coronary artery disease [13].
Diabetic cardiomyopathy is also associated with left ventricular

hypertrophy [14], independent of coronary artery disease [15].
Hypertrophy only seems to be observed in patients with diabetes,
not in patients with impaired fasting glucose or impaired glucose
tolerance, suggesting that it is a consequence of long-term
diabetic effects [16]. In addition, diabetic cardiomyopathy is
characterized by an increase in both perivascular and interstitial
fibrosis [17–19].

Potential mechanisms underlying diabetic cardiomyopathy
The development of diabetic cardiomyopathy is likely to be
multifactorial. Several pathways have been implicated, including
vascular endothelial dysfunction, glucose toxicity, mitochondrial
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dysfunction, and lipotoxicity [20]. It is difficult to determine how
each of these factors individually contributes to cardiac dysfunc-
tion in diabetic patients. However, involvement of the vascular
endothelium is becoming a front-runner in the pathogenesis of
this disease. Hyperglycemia, a hallmark of diabetes, has been
identified as one of the key causes of endothelial dysfunction in
both type 1 and type 2 diabetes [21, 22]. High glucose levels lead
to multiple biochemical modifications in endothelial cells and
myocytes. These modifications include enhanced non-enzymatic
glycation, sorbitol-myo-inositol-mediated changes, redox poten-
tial alterations, and the activation of protein kinase C (PKC) [23].
Hyperglycemia also causes an increase in reactive oxygen species
(ROS) in endothelial cells, overwhelming the cell’s ability to
overcome oxidative stress [24, 25]. In the following section, we will
discuss the effects of diabetes on the vascular endothelium and
how they may potentially play a role in the development of
diabetic cardiomyopathy.

Mechanisms of endothelial dysfunction in diabetic
cardiomyopathy
Normal endothelial cell metabolism. Under healthy conditions,
endothelial cells are quiescent and play a role in maintaining
vascular homeostasis. Endothelial cell metabolism is shown in
Fig. 1. Glucose enters the cell through the GLUT-1 transporter,
whose activity is predominantly regulated by extracellular glucose
concentrations [26]. Glucose uptake through this receptor occurs
in an insulin independent manner [27]. Consequently, endothelial
cells are more susceptible to hyperglycemia-induced damage than
other cell types.
The generation of ATP in endothelial cells occurs primarily via

the glycolytic pathway rather than through oxidative phosphor-
ylation [28, 29]. During glycolysis, some glucose-6-phosphate (G-6-
P) gets shunted into the pentose phosphate pathway, producing

NADPH, an antioxidant found in endothelial cells, as well as
pentoses, which can be used to make nucleic acids, nucleotides,
and amino acids. This process also allows for the conversion of
glutathione disulfide to glutathione, which helps prevent oxida-
tive stress by converting H2O2 to H2O.
Fatty acid oxidation occurs in endothelial cells; however, it is

unclear what role this oxidation plays since it seems to contribute
very little to energy production in the endothelium [30, 31].
During periods of glucose deprivation, there is an increase in fatty
acid oxidation, suggesting a degree of metabolic compensation
[32]. Several theories have been proposed for the reason behind
fatty acid oxidation in endothelial cells. Fatty acid oxidation is a
source of NADPH that helps maintain the redox balance in
endothelial cells. The oxidation of lipids may also play a role in
regulating endothelial cell permeability [31]. Finally, fatty acid
oxidation in endothelial cells may be important in the de novo
synthesis of nucleotides by providing the carbon atoms necessary
to build aspartate and glutamate [33].

Diabetes-induced changes in the glycolytic pathway. Metabolic
changes associated with the diabetic myocardium have been
extensively studied. Under hypoxic or inflammatory conditions,
such as those that occur during diabetic cardiomyopathy,
endothelial cells work to revascularize tissue to restore the
delivery of oxygen and nutrients to damaged areas. Endothelial
cells enhance their glycolytic flux even further during vessel
sprouting, doubling their glycolytic rate during periods of
proliferation or migration [34]. This enhancement allows the cells
to migrate into hypoxic areas and proliferate where oxidative
metabolism would be impaired. This alteration, in addition to
enhanced glucose transportation due to the increase in GLUT-1
activity that occurs during diabetes, causes an increase in
intracellular glucose concentrations in diabetic endothelial cells

Fig. 1 Normal endothelial cell metabolism. In healthy endothelial cells, glucose enters the cell through the GLUT-1 receptor, in an insulin
independent manner. Energy production occurs mostly by glycolysis, rather than through oxidative phosphorylation. During normal
endothelial function, some of the glucose-6-phosphate that is produced during glycolysis gets shunted into the pentose phosphate pathway.
The purpose of this pathway is to produce NADPH, an important antioxidant in endothelial cells, as well as pentoses, which can be used to
produce nucleic acids, nucleotides, and amino acids. It also allows the conversion of glutathione disulfide (GSSG) back to glutathione (GSH),
which helps to prevent oxidative stress by converting H2O2 to H2O
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[35]. Endothelial cells address this excess glucose through several
mechanisms.
Glucose can be shunted into the side branches of glycolysis,

such as the hexosamine biosynthesis pathway, the pentose
phosphate pathway, the polyol pathway, and the glycation
pathway. The pentose phosphate pathway is a side pathway of
glycolysis with two phases: the oxidative phase and the non-
oxidative phase. Glucose enters the pentose phosphate pathway
as G-6-P. During the oxidative phase, NADPH is produced, whereas
during the non-oxidative phase, pentoses are produced. Under
hyperglycemic conditions, entry of G-6-P into the pentose
phosphate pathway is inhibited, which leads to reduced
endothelial cell viability and migration [36]. In addition, inhibition
of the pentose phosphate pathway leads to oxidative stress and
endothelial dysfunction [37], whereas overexpression of G-6-P
dehydrogenase, the first and rate-limiting enzyme of the pentose
phosphate pathway, decreases endothelial oxidative stress [38].
The hexosamine biosynthesis pathway converts fructose-6-
phosphate (a glycolytic intermediate) to uridine 5′-diphosphate
N-acetylglucosamine (UDP-GlcNAc), which under normal condi-
tions, is used for protein glycosylation. However, in diabetic
endothelial cells, hyperglycemia-induced glycosylation inhibits
endothelial nitric oxide synthase (eNOS) activation [39] and
angiogenesis [40]. In the polyol pathway, aldose reductase
converts glucose to sorbitol, using up NADPH. Sorbitol then gets
converted to fructose and 3-deoxyglucosone, a precursor for the
formation of advanced glycation end products (AGEs). Over-
production of AGEs, which occurs during diabetes, causes a variety
of detrimental effects in endothelial cells by binding to the
receptor for advanced glycation end products (RAGE), such as
increasing endothelial cell permeability [41], inhibiting eNOS
activity [42], impacting the coagulation system [43, 44], and
activating both NADPH oxidase (NOX) and NF-kB [45, 46]. During
the glycation pathway, glycolytic intermediates are converted to
methylglyoxal, which modifies DNA and proteins. Upregulation of

this pathway has been implicated in diabetic cardiomyopathy,
leading to an inhibition of eNOS activity in endothelial cells
[47, 48].

Hyperglycemia and vascular endothelial permeability. In diabetes,
hyperglycemia is caused by reduced insulin levels and/or insulin
resistance, leading to excessive levels of glucose circulating in the
blood plasma. A blood sugar level with a consistent range
between ~5.6 and 7mmol/L is considered hyperglycemic,
whereas a concentration above 11.1 mmol/L is considered
diabetic. However, symptoms are usually not noticeable until
blood sugars reach even higher levels of ~15–20mmol/L.
Interestingly, short-term hyperglycemia, caused by insulin dis-
continuation, is associated with an increase in myocardial systolic
contractile function in type 2 diabetic patients with or without
heart failure [49]. Chronic levels of blood glucose exceeding 7
mmol/L can lead to metabolic derangements in endothelial cells
and induce organ damage, as shown in Fig. 2.
Experimental evidence indicates that hyperglycemic conditions

promote increased permeability of the endothelial cell layer in the
myocardium while also decreasing capillary density [50]. A
potential mechanism for this increased permeability during
diabetes is activation of the diacylglycerol (DAG)-PKC signaling
pathway [51, 52]. PKC is a family of serine-threonine kinases. The
PKC superfamily can be classified into three subfamilies: classical
PKC (cPKC; α, β1, β2, and γ), novel PKC (nPKC; δ, ε, η, θ, and μ), and
atypical PKC (aPKC: ζ, λ/ι) [53]. The activation of cPKC and nPKC is
DAG dependent, whereas the activation of aPKC is not DAG
dependent [53]. DAG-dependent subfamilies cPKC and nPKC were
previously reported to be associated with vascular permeability in
diabetes [54]. Activation of this pathway may contribute to
diabetic endothelial dysfunction by increasing endothelial cell
permeability and leukocyte adhesion in several tissues, including
the heart, retina, and kidney [51]. The mechanism by which PKC
activation leads to increased endothelial cell permeability remains

Fig. 2 Hyperglycemia-induced metabolic derangement in endothelial cells. During diabetes, entry of glucose-6-phosphate into the pentose
phosphate pathway is inhibited. This causes a reduction in the production of NADPH and a buildup of H2O2, which both contribute to
oxidative stress in diabetic endothelial cells
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unclear. It has recently been shown in human umbilical vein
endothelial cells (HUVECs) that hyperglycemia leads to the
phosphorylation of myosin light chain (MLC) by PKC, which in
turn causes VE-cadherin tyrosine phosphorylation and the
disruption of adherens junctions [55]. Proteins associated with
endothelial tight junctions include transmembrane, scaffolding,
and signaling proteins [56]. In particular, the transmembrane
proteins occludin, tricellulin, the claudin family, and junction
adhesion molecules, along with the scaffolding zonula occludens
proteins (ZO−1, −2, and −3), play major roles in the formation and
regulation of tight junctions [57]. Hyperglycemia-mediated
activation of PKC is implicated in the development of oxidative
stress and is accompanied by an excessive release of free radicals,
which promote endothelial barrier dysfunction in many vascular
conditions, including diabetes and cerebral ischemia.

Diabetes-induced inhibition of nitric oxide. Another hallmark of
endothelial dysfunction is a deficiency in the bioavailability of NO,
along with a variety of other vasoactive factors produced by
endothelial cells. Under healthy conditions, the endothelium
releases vasodilators, such as NO, prostacyclin, and bradykinin, as
well as vasoconstrictors, such as vasoconstrictor prostanoids,
endothelin, and angiotensin-II. The balance between the release of
vasoconstrictors and vasodilators by endothelial cells helps
maintain coronary vascular structure. During diabetic cardiomyo-
pathy, an imbalance between the release of constricting and
relaxing factors occurs, as shown in Fig. 3. Diabetic conditions
cause an upregulation of various vasoconstrictors. For example, an
increase in endothelin production has been observed in the
diabetic heart [58], which may lead to vessel hypertrophy and
increased myocardial fibrosis, both characteristics of diabetic
cardiomyopathy [59]. Importantly, vasoconstrictor prostanoids,
including vasoconstrictor prostaglandin H2 (PGH2), thromboxane
A2 (TXA2), and PGF2α, are also enhanced in diabetes. These
products, in turn, upregulate NAPDH oxidase and type 4 and type
5 phosphodiesterases (PDE4 and PDE5), resulting in increased ROS
production, degradation of cAMP and cGMP, and vasoconstriction
[60, 61]. In addition, in diabetic endothelial cells, there is an
impaired response of endothelial-dependent hyperpolarization
(EDH) [62]. There are smaller arteries in which endothelium-
mediated vasodilation is predominately affected by EDH in

vascular smooth muscle cells. EDH causes the relaxation of
vascular smooth muscle by hyperpolarizing its cell membrane and
closing voltage-operated calcium channels, leading to a reduction
in intracellular free calcium levels [63].
A key vasoactive factor involved in endothelium-dependent

relaxation is NO. In the presence of oxygen, NO is synthesized
from L-arginine and NADPH in a reaction catalyzed by nitric oxide
synthase (NOS). In diabetic vessels, however, this NO-dependent
vasodilatory response is lost [64–66]. This deficiency may be
caused by the inactivation of NO due to an increase in free radicals
[67] rather than by the reduced activity or expression of eNOS [68,
69]. Treatment of HUVECs and rat heart endothelial cells with D-
glucose leads to an increase in the generation of reactive oxygen
intermediates (ROIs) [70]. In addition, there is an increase in
mitochondrial ROS concentrations in coronary endothelial cells
from diabetic rats [71]. Furthermore, endothelium-dependent
vasodilation in diabetic rats can be restored by treatment with
antioxidants [72], and treatment of aortas from STZ-induced
diabetic rats and hamsters with superoxide dismutase (a specific
scavenger of superoxide anions) enhances endothelium-
dependent relaxation [73, 74]. This evidence suggests a role for
antioxidants in enhancing cardiac function by preventing
endothelial dysfunction in the presence of diabetes.
Several mechanisms have been proposed to explain how an

increase in oxidative stress can lead to decreased NO availability

Fig. 3 Effect of diabetic endothelial dysfunction on vasodilators and
vasoconstrictors. Hyperglycemia in diabetes decreases vasodilation
through the decreased bioavailability of nitric oxide (NO) and
prostacyclin (PGI2). It also caused an increase in endothelium-
derived contracting factors including prostanoids, endothelin-1 (ET-
1), angiotensin-II (Ang-II), dinucleotide uridine adenosine tetrapho-
sphate (UP4A), ROS, and cyclooxygenase (COX)-derived prostanoids.
EC endothelial cell, SMC smooth muscle cell

Fig. 4 Mechanism of eNOS uncoupling. During diabetes, hypergly-
cemia activates NAD(P)H oxidase (NOX), which is responsible for
converting oxygen into the superoxide anion (O2

-), using up NADPH
during the reaction. Superoxide reacts with NO to form peroxynitrite
(ONOO-). Peroxynitrite is believed to be the main cause of eNOS
uncoupling in endothelial cells. Under normal physiological condi-
tions, NO is synthesized by eNOS from L-arginine and oxygen, using
BH4 as a cofactor. During eNOS uncoupling, however, eNOS
produces superoxide instead of NO, leading to oxidative stress in
endothelial cells. It is thought that peroxynitrite reacts with BH4, and
that this loss of BH4 is the main mechanism by which eNOS
becomes uncoupled. However, more recent evidence suggests that
other mechanisms may be involved
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in diabetic endothelial cells, such as reduced tetrahydrobiopterin
(BH4) bioavailability (oxidation of BH4) and eNOS uncoupling [75].
NOX is an enzyme involved in endothelial cell signaling. It
catalyzes the reduction of oxygen to superoxide anions (O2

−) by
using NADPH as an electron donor. During high glucose and
insulin-resistant conditions, NOX activity, and thus, superoxide
anion production, is increased [76–78]. Superoxide anions react
with NO to form peroxynitrite (ONOO−). Peroxynitrite causes
eNOS uncoupling, as described in Fig. 4. Peroxynitrite leads to
the oxidation of BH4, a cofactor necessary for NOS activity [79,
80]. However, some evidence suggests that the depletion of BH4

is not the main cause of endothelial dysfunction in vivo during
periods of oxidative stress [81]. Although it has been shown that
BH4 supplementation is an effective treatment for suppressing
superoxide anion production and improving vasodilation in the
endothelium [82–85], many of these studies were done with
concentrations of BH4 that are 100 times larger than physiolo-
gical concentrations. Thus, other mechanisms have been
proposed. For example, peroxynitrite may cause oxidation of
the zinc-thiolate center of eNOS, resulting in eNOS uncoupling
[86].
Other mechanisms are involved in NO-induced endothelial

dysfunction in diabetes. An endogenous inhibitor of NO
synthase, asymmetric dimethylarginine (ADMA), is found at
elevated levels in patients with type 2 diabetes [87]. High
glucose-induced impairment of dimethylarginine dimethylami-
nohydrolase (DDAH) activity causes ADMA accumulation and
may contribute to a reduction in NO expression and endothelial
vasodilator dysfunction in diabetes [88, 89]. The quenching of
NO by AGEs in diabetes plays an important role in the
development of vasodilatory impairment [90].

Mito-oxidative stress and mitochondrial dysfunction in diabetes.
Plenty of evidence indicates that myocardial metabolism is altered
in diabetes, which likely contributes to diabetic cardiomyopathy.
The mitochondria are the center of metabolism and are thus likely
to be impacted by impaired metabolism associated with diabetes.
Oxidative stress occurs when there is an imbalance between the
production of ROS, which include O2

−, NO, the hydroxyl radical,
hydrogen peroxide, and peroxynitrite, and the cell’s ability to
detoxify reactive intermediates. Hyperglycemia mediates the
induction of oxidative stress in the pathogenesis of diabetic
complications, including diabetic cardiomyopathy [91]. For
example, hyperglycemia leads to an increase in mitochondrial
ROS in diabetic endothelial cells, which causes oxidative DNA
damage. This damage activates the polyADP-ribose polymerase
(PARP-1) pathway, as shown in Fig. 5, a pathway involved in DNA
injury. Its activation stimulates the transfer of ADP-ribose units
from NAD+ to nuclear proteins, resulting in the depletion of NAD
+ and ATP from the cell. Inhibition of PARP-1 in endothelial cells
may prevent endothelial dysfunction caused by diabetes [92].
Activation of PARP-1 also leads to the inhibition of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [93], caus-
ing the buildup of glycolytic intermediates. These intermediates
get shunted into several different pathways, including the
hexosamine biosynthesis pathway, the polyol pathway, and the
glycation pathway, all of which are increased in hyperglycemic
endothelial cells [93].
Sphingosine-1-phosphate (S1P), which binds to S1P receptors

(S1PRs), also regulates an array of biological activities in endothelial
cells. It has recently been demonstrated that high levels of glucose
enhance ROS generation and markedly reduce NO in endothelial
cells and that this effect is completely reversed by either induction

Fig. 5 Effects of mitochondrial oxidative stress on endothelial function. During diabetes, there is an increase in mitochondrial oxidative stress,
which causes mitochondrial DNA damage. This activates the PARP-1 pathway in the nucleus of endothelial cells, which has been implicated in
response to DNA injury. Activation of PARP-1 has been shown to inhibit Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), a key enzyme
involved in glycolysis. This inhibition causes the buildup of glycolytic intermediates, which get shunted into the polyol pathway, the
hexosamine biosynthesis pathway, or the glycation pathway. These pathways all contribute to endothelial dysfunction. Blue color represents
nucleus and green represents the mitochondria
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of S1PR1 or reduction in S1PR2 [94]. This finding suggests that
S1PR1 and S1PR2 play crucial roles in endothelial dysfunction
caused by hyperglycemia-induced ROS production.
In addition, hyperglycemia-induced overproduction of mito-

chondrial ROS (mtROS) in cultured endothelial cells can be
inhibited by AMPK activation [95], which seems to work through
the upregulation of MnSOD (a mitochondrial specific antioxidant)
[96] and UCP2 [97]. In patients with both coronary artery disease
and type 2 diabetes, elevated mtROS levels in the endothelium led
to an increase in AMPK activation, which supports a role for AMPK
in protection against oxidative stress [98]. The upregulation of
AMPK in the endothelium of diabetic mice may also prevent
endothelial dysfunction [99]. Thus, AMPK may be a novel
therapeutic target in the treatment of diabetes by improving
blood glucose homeostasis, lipid profiles, and blood pressure
[100]. Taken together, these findings suggest that ROS inhibition
may provide beneficial effects in the prevention of diabetic
cardiomyopathy.
There is also an imbalance between mitochondrial fission and

fusion in diabetic endothelial cells, which may be related to
increased oxidative stress. Mitochondrial fission is defined as the
division of a mitochondrion into two separate mitochondria,
leading to the elimination of damaged and dysfunctional
mitochondria. Mitochondrial fusion is the merging of two or more
mitochondria into one mitochondrion, which allows for the
formation of a dynamic network that can respond to metabolic
changes. This balance maintains normal mitochondrial function
[101]. An imbalance between mitochondrial fission and fusion
may contribute to the development of endothelial dysfunction in
diabetes [102]. Exposure of endothelial cells to hyperglycemia
leads to an increase in mitochondrial fission, which can be
ameliorated by decreasing superoxide anion concentrations [103].
This fission may be caused by an increase in dynamin-related
protein 1 (DRP1) expression, an activator of mitochondrial fission,
or a decrease in optic atrophy 1 (OPA1), an activator of
mitochondrial fusion [103]. Thus, mitochondrial dysfunction in
endothelial cells represents a crucial step in the development of
endothelial dysfunction.

CONCLUSION
Although diabetic cardiomyopathy is a complex disease with
many possible causes, its underlying mechanisms are still not
clear. Metabolic derangements in myocytes have been intensively
studied. However, increasing evidence suggests that endothelial
dysfunction may be one of the primary mechanisms involved in its
pathogenesis. Hyperglycemic conditions in the diabetic heart lead
to metabolic derangements and oxidative stress in cardiovascular
endothelial cells, which cause multiple effects, such as increased
permeability, impaired endothelial relaxation, and a decrease in
NO availability. Therefore, endothelial cells represent a potential
therapeutic target in the treatment of the disease. More work
needs to be done to elucidate the most important pathways
involved in the development of diabetic cardiomyopathy. How-
ever, studies looking at the prevention of hyperglycemia-induced
endothelial dysfunction through BH4 or antioxidant supplementa-
tion show promising results. These findings suggest a significant
role for endothelial cells in future diagnosis and treatment of the
disease.
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