Check for updates

ARTICLE CB_2 receptor antibody signal specificity: correlations with the use of partial CB_2 -knockout mice and anti-rat CB_2 receptor antibodies

Hai-ying Zhang¹, Hui Shen², Chloe J. Jordan¹, Qing-rong Liu³, Eliot L. Gardner¹, Antonello Bonci² and Zheng-xiong Xi¹

Cannabinoid CB1 receptors are highly expressed in the brain and functionally modulate presynaptic neurotransmitter release, while cannabinoid CB₂ receptors (CB₂Rs) were initially identified in the spleen and regarded as peripheral cannabinoid receptors. Recently, growing evidence indicates the presence of functional CB₂Rs in the brain. However, this finding is disputed because of the specificity of CB₂R antibody signals. We used two strains of currently available partial CB₂-knockout (CB₂-KO) mice as controls, four anti-rat or anti-mouse CB₂R antibodies, and mRNA quantification to further address this issue. Western blot assays using the four antibodies detected a CB₂R-like band at ~40 kD in both the brain and spleen. Notably, more bands were detected in the brain than in the spleen, and specific immune peptides blocked band detection. Immunohistochemical assays also detected CB2-like immunostaining in mouse midbrain dopamine neurons. CB₂R deletion in CB₂-KO mice may reduce or leave CB₂R-like immunoreactivity unaltered depending on antibody epitope. Antibodies with epitopes at the receptor-deleted region detected a significant reduction in CB₂R band density and immunostaining in N-terminal-deleted Deltagen and C-terminal-deleted Zimmer strain CB₂-KO mice. Other antibodies with epitopes at the predicted receptor-undeleted regions detected similar band densities and immunostaining in wild-type and CB₂-KO mice. Quantitative RT-PCR assays detected CB₂ mRNA expression using probes that targeted upstream or downstream gene sequences but not the probe that targeted the gene-deleted sequence in Deltagen or Zimmer CB₂-KO mice. These findings suggest that none of the tested four polyclonal antibodies are highly mouse CB₂R-specific. Non-specific binding may be related to the expression of mutant or truncated CB₂R-like proteins in partial CB₂-KO mice and the use of anti-rat CB₂ antibodies because the epitopes are different between rat and mouse CB₂Rs.

Keywords: cannabinoid; CB₂ gene; CB₂ receptors; CB₂ receptor antibody; specificity; CB₂-KO mice; midbrain dopamine neurons; spleen; specific immune peptides

Acta Pharmacologica Sinica (2019) 40:398-409; https://doi.org/10.1038/s41401-018-0037-3

INTRODUCTION

The endogenous cannabinoid system consists of endocannabinoids (e.g., anandamide and 2-arachidonoylglycerol), the enzymes responsible for their synthesis and degradation, and cannabinoid receptors and transporters [1, 2]. Two types of cannabinoid receptors (CB₁Rs and CB₂Rs) have been identified. CB₁Rs are highly expressed in the brain and functionally modulate presynaptic neurotransmitter release [1, 2]. In contrast, CB₂Rs were initially identified in the spleen and regarded as peripheral cannabinoid receptors [3, 4]. This view has been challenged by recent findings that CB₂R and its mRNA are expressed in the brains of rats and mice [5-9]. In addition, Western blot (WB) assays and immunohistochemistry (IHC) consistently detected CB₂R signaling in multiple brain regions and neuronal phenotypes [5, 6, 10-16]. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis has also identified CB₂ mRNA and its isoforms in several regions of the central nervous system, including the retina [17, 18], cortex [8, 19–21], striatum [20, 21], hippocampus [21, 22],

amygdala [19, 20], brainstem [5], and cerebellum [23]. In situ hybridization (ISH) assays revealed CB₂R mRNA expression in several neuronal phenotypes, including glutamatergic neurons in the cortex and hippocampus [22, 24, 25] and dopaminergic (DA) neurons in the midbrain [9, 26–29]. Electrophysiological assays confirmed the presence of functional CB₂Rs in brain glutamatergic neurons [22, 30-32], GABAergic neurons [33], and DA neurons [9, 22, 26, 29]. However, the specificity of the detected CB₂R signals was questioned because CB2-knockout (CB2-KO) mice were not used as controls in many early studies [34]. Recent findings that CB₂R antibody signals were detected in wild-type (WT) and CB₂-KO mice support this skepticism [35, 36]. A C-terminal-deleted partial CB₂-KO strain was used in those studies, and the expression of mutant or truncated CB2-like proteins may have partially contributed to the observed "non-specific" binding. Anti-rat or anti-human CB₂R antibodies were used in those studies [35, 36], and species differences in antibody epitopes and CB₂R structures [8, 28] may also confound interpretations of antibody signal

Received: 15 January 2018 Accepted: 2 May 2018 Published online: 2 July 2018

¹Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA; ²Synaptic Plasticity Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA and ³Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA Correspondence: Zheng-xiong Xi (zxi@intra.nida.nih.gov)

specificity. Methodological limitations may be a valid reason for skepticism regarding CB₂R expression in the brain. Therefore, determinations of CB₂R antibody signal specificity are urgently needed to understand the presence and function of CB₂Rs in the brain and the potential utility of CB₂R ligands in the treatment of various neuropsychiatric disorders.

The present study used multiple approaches to investigate CB_2R signal specificity. We used WB assays and four antibodies that targeted the receptor-deleted or -undeleted regions in CB_2 -KO mice. We used double-label fluorescent IHC assays and the same antibodies to examine CB_2R immunostaining in midbrain DA neurons in different mouse genotypes. Midbrain DA neurons were chosen because functional CB_2Rs were found in this region [7, 9]. We used qRT-PCR and three TaqMan probes to examine and compare CB_2R gene (mRNA) expression in different mouse genotypes. All of these assays included multiple positive and negative controls, including immune peptides, CB_2 -rich spleen tissue, CB_1 -KO mice, and two strains of currently available CB_2 -KO mice (i.e., the N-terminal-deleted Deltagen strain and the C-terminal-deleted Zimmer strain) to determine the specificity of detected CB_2R signals.

MATERIALS AND METHODS

Animals

Male WT, CB₁-KO [37], and two strains of CB₂-KO mice [4, 30] with C57BL/6J genetic backgrounds were bred at the National Institute on Drug Abuse (NIDA). Genotyping was performed in our laboratory prior to experimentation. All animals used in the present experiments were matched for age (8–14 weeks) and weight (25–35 g). Mice were housed individually in a climate-controlled animal colony room on a reversed light–dark cycle (lights on at 7:00 P.M., lights off at 7:00 A.M.) with free access to food and water. The animals were maintained in a facility fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International. All experimental procedures were performed in accordance with the *Guide for the Care and Use of Laboratory Animals* of the U.S. National Research Council, and the Animal Care and Use Committee of the NIDA of the U.S. National Institutes of Health approved all procedures.

Western immunoblotting assays

Four CB_2 antibodies were used. (1) The Abcam rat CB_2 (rCB₂) polyclonal antibody was purchased from Abcam (ab-3561, Abcam PLC, Cambridge, MA, USA) with epitope (amino acids 1-32) at the rCB₂R N-terminal. The epitopes of rat and mouse CB₂ (mCB₂) receptors differ by 5 amino acid residues. (2) The Alomone rCB₂ polyclonal antibody was purchased from Alomone (ACR-002, Alomone Labs, Jerusalem, Israel), which recognizes the third intracellular loop. The epitope of the Alomone antibody amino acids (228-242 amino acids) is identical between rCB2Rs and $mCB_2Rs.$ (3) The Mackie rCB_2 antibody was provided by Dr. Ken Mackie at Indiana University. The epitope (amino acids 326-342) of the Mackie antibody differs by 3 amino acids between rCB₂Rs and mCB₂Rs. (4) A mCB₂ polyclonal antibody (NIH5633, Baltimore, MD, USA) was custom designed. The epitope (amino acids 326-340) is located at the mCB₂R C-terminal. The NIH5633 mCB₂ antibody was produced by Genemed Synthesis, Inc. (San Antonio, TX, USA). Table 1 details the epitopes of these CB₂ antibodies. The immune peptide for each individual antibody stated above was purchased from the same antibody provider and the amino acid sequences (epitopes) of the immune peptides are highlighted in Table 1.

All mice for WB assays were perfused transcardially with 0.9% saline under deep anesthesia to prevent contamination of brain tissue with CB_2 -rich immune cells in blood. Whole striatum and the spleen were dissected. Tissues were homogenized in RIPA lysis buffer (Cell Signaling Technology, Inc., Danvers, MA, USA), and the protein concentration of each sample was quantified using a Bio-

CB₂ antibody signal specificity H.-y. Zhang et al.

Rad Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA). A total of 30 µg spleen proteins and 50 µg striatal proteins were used for Western immunoblot assays. Membranes were incubated with a rabbit anti-CB₂ antibody (Abcam, 1:2000; Alomone, 1:250; NIH5633, 1:1000; Mackie, 1:500) and mouse anti- β -actin (1:2500) (Sigma-Aldrich, St. Louis, MO, USA) and incubated with secondary antibodies, goat anti-mouse IgG for β -actin (IRDye 680CW), and goat anti-rabbit IgG for CB₂ (IRDye 800CW) (LI-COR Bioneurosciences, Lincoln, NE, USA). Membranes were scanned using a LI-COR Odyssey Image System (LI-COR Biosciences, Lincoln, NE, USA). Band density was measured using the Image J software (http://rsb. info.nih.gov/ij/).

IHC assays

The IHC procedures were performed as reported previously [9]. Briefly, mice were deeply anesthetized and transcardially perfused with cold saline followed by 4% paraformaldehyde in 0.1 M phosphate buffer. Brain tissues were transferred to 20% sucrose in phosphate buffer at 4 °C overnight. Coronal sections were cut at 10 µm on a cryostat (CM3050S, Leica Microsystems Nussloch GmbH, Nussloch, Germany). Tissue sections containing the ventral tegmental area (VTA) were blocked and floated in 5% bovine serum albumin and 0.5% Triton X-100 phosphate buffer for 2 h at room temperature. Dual-labeling IHC was performed using one of the above-listed CB₂ antibodies (Abcam, 1:1000; Alomone, 1:250; NIH5633, 1:500; Mackie, 1:500) and an anti-tyrosine hydroxylase (anti-TH) monoclonal antibody (1:500; Millipore, Billerica, MA, USA). Sections were washed and incubated with a mixture of secondary antibodies, goat anti-rabbit Alexa 488 for CB₂ receptors, and goat anti-mouse Alexa 568 for TH (1:500) in 5% bovine serum albumin and 0.5% Triton X-100 phosphate buffer for 2 h at room temperature. Sections were washed, mounted, and cover slipped. Fluorescent images were captured using a fluorescence microscope (Nikon Eclipse 80i) equipped with a digital camera (Nikon Instruments Inc., Melville, NY, USA). All images were captured under identical optical conditions. Densitometric analysis was used to quantify CB₂ immunostaining density on individual VTA DA neurons and determine whether deletion of CB₂Rs abolished or attenuated the expression of CB₂Rs in VTA DA neurons [23]. Each CB₂-positive DA neuron was outlined manually, and CB₂ fluorescence intensity was measured using the Image J software. The background signal was defined as the mean background from 5 to 10 regions outside of DA neurons in each slice. The background signal was subtracted, and the ratio F/A was used to define the mean fluorescence of individual DA cells (F) normalized to total cellular surface (A). Quantification was performed on >100 cells from 2 to 5 animals of each strain.

qRT-PCR assays

Immune cells in blood contain a high density of CB₂ receptors. Therefore, all mice used for qRT-PCR were perfused transcardially with 30–50 mL 0.9% saline under ketamine and xylazine anesthesia to prevent contamination of brain tissue. Brains and spleen were removed, and the prefrontal cortex, striatum, and midbrain were dissected. Total RNA was extracted using a RNeasy Mini Kit (QIAGEN, Valencia, CA, USA), according to the manufacturer's instructions. The purity and integrity of each extract were determined using absorbance at 260 nm in an Eppendorf BioPhotometer Plus (Eppendorf AG, Hamburg, Germany).

qRT-PCR procedures for the detection of mCB₂ mRNA were performed as reported previously [8, 9]. Briefly, three specific mCB₂ probes were used: a mCB_{2A} probe that recognizes the conjunction region of encoding exons 1 and 3 (aligns with base pair positions 89–182 of the cDNA NM_009924.2); a mCB₂--Zimmer-ko probe (for the Zimmer CB₂-KO strain) that targets a region close to the 3' end of exon 3 (aligns with base pair positions 885-989 of NM_009924.2; the deleted exon 3 aligns with 400

Table 1. The amino acid sequences of CB₂Rs in rats, mice, and two strains of CB₂-KO mice

(Abcam rCB ₂ -Ab)			
	* * * **	TM1	
Rat CB_2	MAGCRELELTNGSNGGLEFNPMKEYMILSDAQ		60
Mouse CB_2	MEGCRETEVTNGSNGGLEFNPMKEYMILSSGQ		60
mCB ₂ -KO(Zimmer)	MEGCRETEVTNGSNGGLEFNPMKEYMILSSGQ	£	60
mCB ₂ -KO(Deltagen) MEGCRETEVTNGSNGGLEFNPMKEY		60
	TM2		
Rat CB_2	IMZ SQRLRRKPSYLFIGSLAGADFLASVIFACNFV		120
Mouse CB_2	SQRLRRRPS1LFIGSLAGADFLASVIFACNFV SRRVRRKPSYLFISSLAGADFLASVIFACNFV		120
$mCB_2-KO(Zimmer)$	SRRVRRR STIFTSSLAGADFLASVIFACNEV SRRLRRKPSYLFISSLAGADFLASVIFACNEV		120
mCB_2 -KO(Deltagen			120
mob ₂ no (bereagen	• /		120
		TM4	
Rat CB_2	VGSLLLTAVDRYLCLCYPPTYKALVTRGRALVA	ALGVMWVLSALISYLPLMGWTCCPSPCS	180
Mouse CB_2	VGSLLVTAVDRYLCLCYPPTYKALVTRGRALVA	ALCVMWVLSALISYLPLMGWTCCPSPCS	180
mCB ₂ -KO(Zimmer)	VGSLLLTAVDRYLCLCYPPTYKALVTRGRALVZ	ALCVMWVLSALISYLPLMGWTCCPSPCS	180
mCB ₂ -KO(Deltagen)PPTYKALVTRGRALVZ	ALCVMWVLSALISYLPLMGWTCCPSPCS	180
	TM5	(Alomone rCB ₂ -Ab)	
Rat CB_2	ELFPLIP <u>NDYLLGWLLFIAILFSGIIYTY</u> GYVI		
Mouse CB_2	ELFPLIPNDYLLGWLLFIAILFSGIIYTYGYV		240
mCB ₂ -KO(Zimmer)	ELFPLIPNDYLLGWLLFIAILFSGIIYTYGYV		216
mCB ₂ -KO(Deltagen)ELFPLIP <u>NDYLLGWLLFIAILFSGIIYTY</u> GYVLWKAHRHVATLAEHQDRQVPGIARMRLD			240
	ТМб	TM7	
Rat CB ₂	VRLAKTLGLVMAVLLICWFPALALMGHSLVTT		300
Mouse CB ₂	VRLAKTLGLVLAVLLICWFPALALMGHSLVTT		300
mCB ₂ -KO(Zimmer)			300
mCB ₂ -KO(Deltagen	1) VRLAKTL <u>GLVLAVLLICWFPALALMGHS</u> LVTTI	LSDQVKEAF <u>AFCSMLCLVNSMVNPIIY</u> A	300
(Mackie rCB ₂ -Ab)			
Rat CB_2	LRSGEIRSAAQHCLTGWKKYLQGLG <mark>SEGKEEA</mark> I	PKSSVTETEA EVKTTTGPGSRTPGCSNC	360
Mouse CB_2	LRSGEIRSAAQHCLIGWKKYLQGLG <mark>PEGKEEG</mark> I	prssvtet eadvktt 347	
<pre>mCB₂-KO(Zimmer)</pre>			
(NIH5633 mCB ₂ -Ab)			

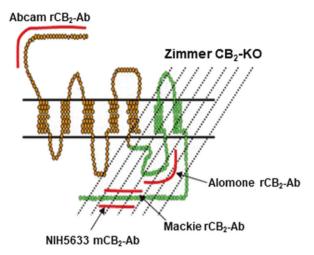
The epitopes (binding sites) of four CB₂R antibodies are highlighted in different colors, and the differing amino acid residues in the epitopes between mCB₂Rs and rCB₂Rs are labeled by the symbol asterisk (*)

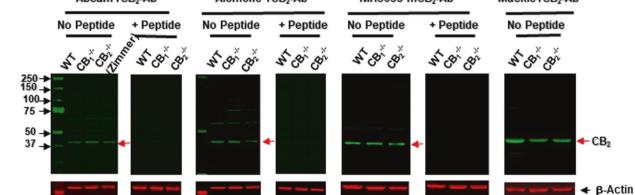
base pair positions 887–1227 of NM_009924.2); and a mCB₂-Deltagen-ko probe (for the Deltagen CB₂-KO strain) that targets a region near the 5' end of exon 3 (aligns with base pair positions 336-409 of cDNA NM_009924.2; the deleted exon 3 aligns with base pair positions 259–593 of cDNA NM_009924.2). Mouse βactin mRNA was used as an endogenous control. The specific base pair sequences of the MGB-Taqman probes and the primers used to detect mCB₂ and β-actin mRNAs were reported previously. [9] All Taqman probes and primers were purchased from Applied Biosystems (Foster City, CA, USA).

qRT-PCR reactions were performed using a QIAGEN OneStep RT-PCR Kit (Catalog number 210212, QIAGEN Inc., Valencia, CA, USA). Each qRT-PCR assay was performed in triplicate in 96-well plates. The following thermal cycle conditions were used: reverse transcription at 50 °C for 30 min and an initial PCR activation step at 95 °C for 15 min followed by 40 PCR cycles of 94 °C for 1 min, 60 °C for 30 s, and 72 °C for 30 s. Final extension was performed at 72 °C for 10 min. qRT-PCR analyses of CB₂-mRNA levels were performed using the $2^{-\Delta\Delta Ct}$ method [38]. Data in the present study are presented as the fold-change in mCB₂ gene expression normalized to the internal β -actin control gene and relative to normal cortex (control tissue) in WT mice. The cycle threshold (Ct) was defined as the number of cycles required for the fluorescent signal to cross the threshold (i.e., exceed the background level). Δ Ct was determined as [mean of the triplicate Ct values for the mCB₂ gene]–[mean of the triplicate Ct values for β -actin]. $\Delta\Delta$ Ct represents the difference between the paired tissue samples as calculated by the formula $\Delta\Delta$ Ct = [Δ Ct of mCB₂ in sample tissue– Δ Ct of mCB₂ gene in spleen or brain tissues compared to control tissue (i.e., cortex in WT mice) is expressed as $2^{-\Delta\Delta$ Ct [8].

Data analyses

All data are presented as the means (\pm S.E.M.). One-way analysis of variance was used to analyze differences in the density of CB₂


 CB_2 antibody signal specificity H.-y. Zhang et al.


Fig. 1 Diagrams illustrating the structures of the mCB₂R gene (**a**), two transcripts (**b**), the gene-deleted regions, and the predicted CB₂Rs in two strains of CB₂R-KO mice (**c**)

401

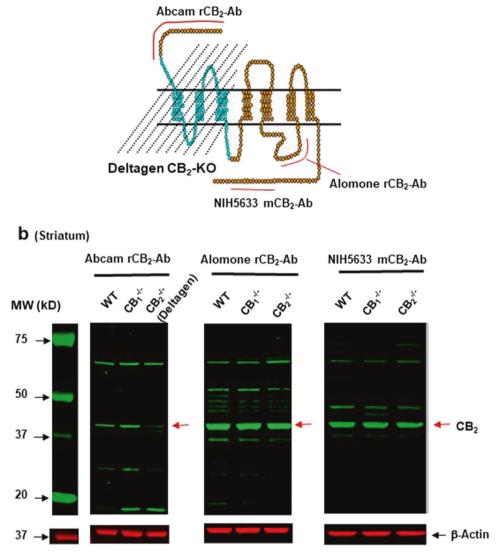


Fig. 2 Western blot results in WT, CB₁-KO, and Zimmer CB₂-KO mice using four different CB₂ antibodies. **a** A diagram showing the binding sites of the four antibodies used in WB assays. **b** The Abcam rCB₂-Ab detected an mCB₂-like band at ~40 kD (mCB₂ monomer, 39 kD) in the striatum of all three mouse genotypes, but the other three antibodies (Alomone, NIH5633, Mackie) detected relatively lower densities of an mCB₂-like band in Zimmer CB₂-KO mice. **c** CB₂-immunoreactive bands detected in the spleen using the same antibodies. More bands were detected in the striatum than the spleen by the multiple antibodies. Preabsorption of the CB₂ antibodies (Abcam, Alomone, NIH5633) with specific immune peptides blocked the immunoreactive bands

402

a (Predicted CB₂R in Deltagen CB₂-KO mice and antibody epitopes)

Fig. 3 Western blot results in WT, CB₁-KO, and Deltagen CB₂-KO mice using three different CB₂ antibodies. **a** A diagram showing the binding sites of the three antibodies used in WB assays. **b** The Abcam rCB₂ antibody detected a much lower density mCB₂-immunoreactive band in the Deltagen CB₂-KO mice than in WT mice, and the other two antibodies detected similar levels of the mCB₂-like band in all three mouse genotypes. *Ab* antibody

immunostaining between mouse strains. Individual group comparisons were performed using Student–Newman–Keuls post hoc test.

RESULTS

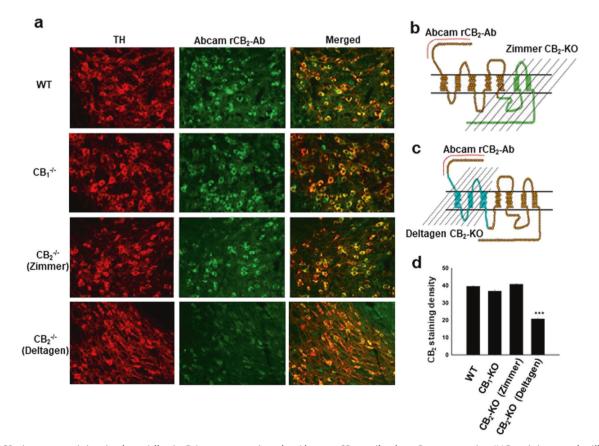
CB₂R gene structure, transcripts, and receptor proteins

The structures of the CB₂R gene, transcripts (mRNA) and receptor proteins must be known in detail to determine whether a detected signal is mCB₂R-specific. Figure 1 shows the mCB₂R gene structure, transcripts, and predicted receptor expression in WT mice and two strains of partial CB₂-KO mice. The mCB₂ gene consists of three exons with two separate promoters (P1 and P2) [8, 13, 28], which encode two transcripts (mCB_{2A} and mCB_{2B}) using exon 1 or exon 2 as different 5' untranslated region sequences. The mCB_{2A} transcript contains exon 1 and exon 3, and the mCB_{2B} transcript contains exon 2 and exon 3. The CB₂R-encoding regions are located entirely on exon 3.

CB₂-KO mice used in the present study

The ideal negative control for determining CB_2R signal specificity would be the use of full CB_2 -KO mice. However, such mice are not currently available. Therefore, we used the two available partial CB_2 -KO strains, the Zimmer strain [4, 39] and the Deltagen strain (The Jackson Laboratory, $Cnr2^{tm1Dgen}$ /J) [30, 40]. The Zimmer strain has a C-terminal 131 amino acid deletion. This mutation eliminates part of the intracellular and extracellular third loops, transmembrane regions 6 and 7, and the intracellular C-terminus region (Fig. 1). The Deltagen strain has an N-terminal 112 amino acid deletion. This mutation causes loss of part of the extracellular N-terminal (from amino acid residues 26 to 137), trans-membrane regions 1–3, and intracellular loops 1 and 2 (Fig. 1; Table 1).

CB₂ receptor antibodies used in this study


Four different antibodies were used to examine CB_2R expression using WB and IHC assays. Two strains of N-terminal and C-terminal CB_2 -KO mice were used as controls. Therefore, we chose different 404

antibodies that targeted the receptor-deleted region or nondeleted regions. For example, we hypothesized that an antibody with an epitope at the N-terminal of CB₂R (such as Abcam rCB₂-Ab) should detect CB₂R signals in WT and Zimmer strain CB₂-KO mice when the C-terminal-deleted Zimmer strain of CB₂-KO mice was used as a control, and CB₂ antibodies with epitopes at the Cterminal (e.g., the Alomone rCB₂-Ab, the NIH5633 mCB₂-Ab, or the Mackie rCB₂-Ab) should only detect a CB₂R signal in WT mice and not in the Zimmer strain of CB₂-KO mice. Similarly, antibodies with epitopes at the N-terminal or C-terminal of CB₂Rs should detect a CB₂R signal only in WT and not in Deltagen CB₂-KO mice when the N-terminal-deleted Deltagen strain of CB₂-KO mice was used as a control. Table 1 shows the amino acid sequences of CB₂Rs in rats. WT mice and two strains of CB₂-KO mice and the epitopes of the antibodies used in this study. There are 3-5 different amino acid residues (marked by the symbol asterisk (*) in Table 1) in the epitopes of the Abcam and Mackie rCB₂ antibodies between rat and mouse CB₂Rs. The epitope of the Alomone rCB₂ antibody is identical in rat and mouse CB₂Rs.

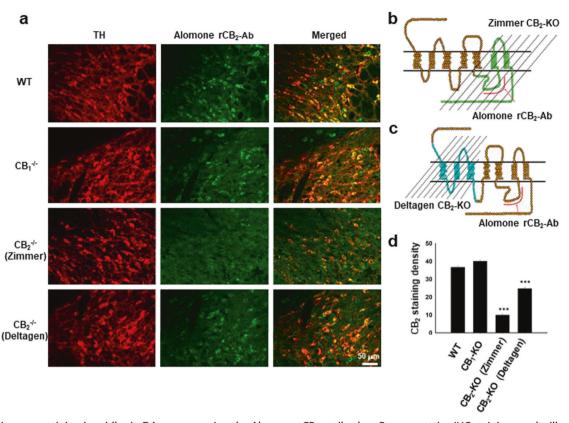

CB₂-immunoreactive bands are detected in WT and CB₂-KO mice Figure 2 shows the WB results of the four different antibodies against rCB₂ or mCB₂ receptors. We found that all antibodies detected multiple bands in brain tissue (striatum) and one band in the spleen. We identified one band at ~40 kD that was likely CB₂Rspecific in the brain and spleen based on the predicted molecular weight of mCB₂Rs. Antibody preabsorption with specific immune peptides blocked the immunoreactive bands (Fig. 2). The Abcam rCB₂ antibody with an epitope at the N-terminal of CB₂Rs (Fig. 1c) detected similar densities of CB₂R bands in WT, CB₁-KO, and Zimmer CB₂-KO mice. The other three antibodies that targeted the C-terminal-deleted region (Fig. 1c) detected relatively lower CB₂R band densities in the C-terminal-deleted Zimmer CB₂-KO mice compared to WT mice.

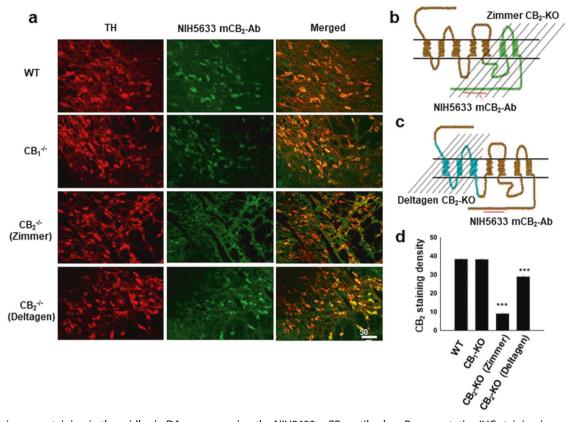
Figure 3 shows similar findings in the N-terminal-deleted Deltagen strain CB₂-KO mice. The Abcam rCB₂ antibody with an epitope at the N-terminal-deleted region (Fig. 3a) detected a significantly lower density of CB₂ band in the Deltagen CB₂-KO mice, and the other two antibodies (NIH5633 and Alomone) with epitopes at the C-terminal of mCB₂Rs (Fig. 3a) detected similar CB₂R signal densities in WT and Deltagen CB₂-KO mice (Fig. 3b). The downstream CB₂ gene sequence from the gene-deleted region should not encode receptor protein because of the presence of an early stop codon, and this finding appears to directly undermine the signal specificity detected by these two antibodies.

CB₂R immunostaining is detected in midbrain DA neurons Previous findings demonstrated functional CB₂Rs in midbrain DA neurons [9, 41, 42]. Therefore, we used double-label fluorescence IHC assays to examine CB₂ immunostaining in midbrain DA neurons in all four strains of WT, CB₁-KO, and CB₂-KO mice. Figure 4 shows the CB₂ immunostaining of the Abcam rCB₂-Ab (with an epitope at the extracellular N-terminal, Fig. 4b, c) and reveals significant CB₂R immunostaining in TH-positive DA neurons in VTA in WT, CB₁-KO, and Zimmer CB₂-KO mice.

Fig. 4 mCB₂ immunostaining in the midbrain DA neurons using the Abcam rCB₂ antibody. **a** Representative IHC staining results illustrating that the Abcam rCB₂-Ab detected relatively lower CB₂ immunostaining in the Deltagen strain of CB₂-KO mice than in the other strains of mice. **b**, **c** Diagrams showing the receptor-deleted regions and the binding site of the Abcam rCB₂ antibody in both strains of partial CB₂-KO mice. **d** The mean densities of mCB₂ staining in DA neurons (over 200–400 DA neurons from 2 to 3 mice per genotype) illustrating a significant reduction in the Deltagen CB₂-KO mice compared to the other strains. ****P* < 0.001, compared to WT mice

Fig. 5 mCB₂ immunostaining in midbrain DA neurons using the Alomone rCB₂ antibody. **a** Representative IHC staining results illustrating that the Alomone rCB₂ antibody detected significantly lower CB₂ immunostaining in the Zimmer strain of CB₂-KO mice. **b**, **c** Diagrams showing the receptor-deleted regions and the binding site of the Alomone rCB₂ antibody in both strains of CB₂-KO mice. **d** The mean densities of mCB₂ staining in DA neurons (over 200–400 DA neurons from 2 to 3 mice per genotype) illustrating a significant reduction in mCB₂ immunostaining in the Zimmer and Deltagen CB₂-KO mice compared to the other strains. ****P* < 0.001, compared to WT mice

However, the density was significantly lower in the N-terminaldeleted Deltagen CB₂-KO mice compared to WT mice (Fig. 4a–d). Figures 5 and 6 show that the Alomone and NIH5633 antibodies with epitopes at the C-terminal of CB₂Rs detected significantly lower densities of CB₂R immunostaining in C-terminal-deleted Zimmer strain CB₂-KO mice than in WT or CB₁-KO mice. Both antibodies detected marked CB₂R immunostaining in the Deltagen CB₂-KO mice, but the mean density was significantly lower than that in WT mice. Notably, the Mackie rCB₂ antibody detected little-to-no CB₂R immunostaining in the VTA DA neurons in WT mice (Fig. 7).


CB₂ mRNA is detected in the brains of both strains of CB₂-KO mice We examined CB₂ mRNA in the brain to determine whether the non-specific binding in the above assays was related to the presence of a CB₂R gene that encoded CB₂R proteins in these partial CB₂-KO mice. We previously reported that the upstream sequence of the CB₂R gene is present and detectable in the Zimmer strain of CB₂-KO mice, but the designed gene-deleted region is not [9, 28]. Therefore, we further examined CB₂ mRNA expression in the Deltagen CB₂-KO mice to investigate whether any complete CB₂R gene remained in this strain. Figure 8a shows the mCB_{2A} transcript, CB₂ gene-deleted regions in the Deltagen CB₂-KO mice, and the target regions of three mCB₂ TaqMan probes on mCB₂ transcripts. The mCB_{2A} probe targeted the upstream undeleted gene sequence, and the mCB₂-Deltagen-ko probe targeted the deleted gene sequence in the Deltagen CB₂-KO mice. The mCB₂-Zimmer-ko probe targeted the downstream gene sequence in Deltagen CB₂-KO mice. The mCB_{2A} probe detected the same levels of mCB₂ mRNA signal in the cortex and spleen in WT and Deltagen CB₂-KO mice (Fig. 8b), and the mCB₂-Deltagen-ko probe failed to detect any CB₂ mRNA signal in Deltagen CB₂-KO mice (Fig. 8c). The mCB₂-Zimmer-ko probe detected similar levels of the downstream CB₂ mRNA signals in WT and Deltagen CB₂-KO mice (Fig. 8d). These findings suggest that the complete CB₂ gene sequence is not present, but the gene sequences downstream from the gene-deleted region remain in Deltagen CB₂-KO mice.

DISCUSSION

The present study demonstrated that multiple CB₂R antibodies detected several CB₂-like immunoreactive bands, including one at ~40 kD, in the mouse brain and spleen, as well as CB₂R immunostaining in midbrain DA neurons in WT mice. However, we detected a relatively lower CB₂R signal in the partial CB₂-KO mice compared to WT controls using an antibody that targeted the receptor-deleted region. In contrast, we detected equivalent levels of CB₂R signal in WT and CB₂-KO mice using antibodies that targeted the predicted upstream or downstream receptor regions from the predicted receptor-deleted regions. qRT-PCR assays using three different probes that targeted the upstream, deleted, or downstream gene sequences in CB₂-KO mice detected CB₂ mRNA signals only at the upstream or downstream gene sequences and not in the designed gene-deleted region in the Deltagen CB₂-KO mice. These findings suggest that antibodybased CB₂R signals are not highly mCB₂R-specific when the currently available partial CB₂-KO mice are used as negative controls, which supports the urgent need for further development of full CB₂-KO mice.

The presence of CB_2Rs in the brain is controversial [34]. Extensive research over the past decade indicates that functional CB_2Rs are expressed in glial cells and neurons in the brain

CB₂ antibody signal specificity H.-y. Zhang et al.

Fig. 6 mCB₂ immunostaining in the midbrain DA neurons using the NIH5633 mCB₂ antibody. **a** Representative IHC staining images illustrating that the NIH5633 mCB₂ antibody detected relatively lower CB₂ immunostaining in the Zimmer strain of CB₂-KO mice than in the other strains of mice. **b**, **c** Diagrams showing the receptor-deleted regions and binding site of the NIH5633 mCB₂ antibody in both strains of CB₂-KO mice. **d** The mean densities of mCB₂ staining in DA neurons (over 200–400 DA neurons from 2 to 3 mice per genotype) illustrating a significant reduction in the Zimmer and Deltagen CB₂-KO mice compared to the other strains. ***P < 0.001, compared to WT mice

[1, 43, 44], and evidence from qRT-PCR and ISH assays in our present study and previous reports strongly support this expression [9, 26, 28]. Electrophysiological evidence of brain CB₂R modulation of neuronal activity in the cortex [31-33], hippocampus [22, 25, 30], striatum [29], and midbrain [9, 26] further support the presence of functional CB2Rs in the brain. We recently reported that systemic or local administration of the selective CB₂R agonist JWH133 or GW405833 into the nucleus accumbens significantly inhibited DA release in this region and attenuated intravenous cocaine self-administration, cocaine-enhanced locomotion, and cocaine-enhanced extracellular DA in the nucleus accumbens. [7] The impact of CB₂R agonism on cocaine's effects was blocked by AM630, a selective CB₂R antagonist, and was absent in Zimmer strain partial CB₂-KO mice. The CB₂R agonist JWH133 also inhibited cocaine-induced conditioned place preference and hyperactivity in rats [45] and cognitive and impulsivelike behavior in mice [20]. The CB₂R antagonist AM630 produced enhanced anxiety [19] and anti-depressive effects [46]. Overexpression of CB₂Rs in the brain decreased anxiety [47] and depression-like behaviors [46], and deletion of CB₂ receptors increased food intake and body weight [48, 49] and caused schizophrenia-like effects [50]. Activation of CB₂ receptors in the brain inhibited emesis in ferrets [5] and produced neuroprotective effects [23, 51-53]. Activation of CB₂ receptors in the spinal cord or thalamus inhibited spontaneous and evoked neuronal responses to noxious stimuli [54-57]. Taken together, these data indicate that functional CB₂Rs modulate a variety of neuronal activities and brain functions and strongly implicate brain CB₂ receptors in behaviors that are reliant on the mesolimbic DA system. However, this conclusion is not fully supported by our present findings of the WB and IHC assays, which indicate that $\mathsf{CB}_2\mathsf{R}$ antibody signals may not be $\mathsf{mCB}_2\mathsf{R}\text{-specific}.$

WB and IHC assays are commonly used for the identification of specific protein expression in the brain and the periphery. However, poor antibody specificity is often invoked to invalidate a conclusion that is fully supported by other studies. An ideal antibody should meet most or all of the following criteria [58-60]: (1) immunoblot bands in WB assays should match the correct molecular weight of a target protein; (2) different antibodies against different epitopes of the same proteins should yield the same results in WB and IHC assays; (3) an ideal antibody should produce consistent results in WB and IHC assays; (4) an immunizing peptide should block immunolabeling; (5) immunolabeling should be consistent with the results generated by other independent techniques, such as autoradiography, RT-PCR, ISH, electrophysiology, and in vivo behavioral assays; (6) immunolabeling should be observed in target protein-positive tissues (positive control); and (7) immunolabeling should be abolished in tissues from target gene-deleted animals (i.e., KO animals and negative controls). Our findings in the present study and other previous reports [7-9, 22, 26, 28] clearly meet most of the above criteria, except for the findings in the partial CB₂-KO mice. The results in WB and IHC assays suggest that none of the tested CB₂R antibodies are highly mCB2-specific. The four antibodies used exhibited only a certain degree of mCB₂ specificity when the appropriate partial CB₂-KO strain was used as a control.

The reasons for non-specific antibody binding in CB₂-KO mice are not clear. There are at least three possibilities. First, the detected signals in this study are not mCB₂R-specific or are totally non-specific. However, this explanation is not supported by the

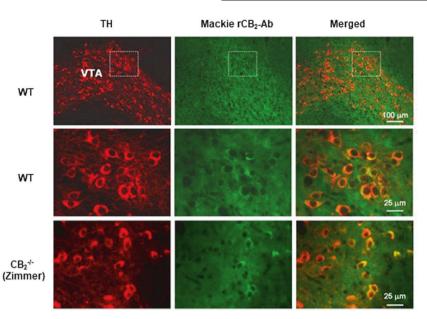
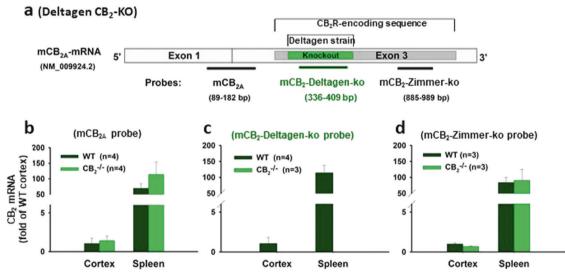



Fig. 7 Representative mCB₂R immunostaining using the Mackie rCB₂ antibody illustrating non-significant CB₂R immunostaining in VTA DA neurons in WT mice

Fig. 8 mCB₂ mRNA expression in the Deltagen CB₂-KO mice. **a** mCB_{2A} transcripts, the CB₂ gene-deleted regions in Deltagen CB₂-KO mice, and the gene sequences detected by three different Taqman probes. **b** The mCB_{2A} probe that targets the undeleted gene regions detected similar levels of mCB₂-mRNA expression in the prefrontal cortex and spleen in WT and CB₂-KO mice. **c** The mCB₂-Deltagen-ko probe detected mCB₂ mRNA only in WT, not in Deltagen CB₂-KO, mice. **d** The mCB₂-Zimmer-ko probe that targets the gene-deleted sequence on exon 3 in Zimmer CB₂-KO mice detected mCB₂ mRNA in WT and Deltagen CB₂-KO mice. NM_009924.2 is the cDNA code in the GenBank of National Center for Biotechnology Information (NCBI)

finding that certain antibodies consistently detected significantly lower (50–70% reduction) CB₂-like signals in WB and IHC assays in CB₂-KO mice compared to WT mice. A second possible reason for the apparent non-specific antibody binding may be related to the presence of mutant or truncated CB₂R fragments in partial CB₂-KO mice. As noted above, the gold standard for a negative control would be full CB₂-KO mice, but these animals are not currently available. We used two CB₂-KO mouse strains with partial CB₂R gene deletion at the N-terminal or the C-terminal in this study as an alternative. We found that the designed gene-deleted sequence was absent, but the upstream and downstream CB₂ gene sequences remained in the Deltagen strain CB₂-KO mice and the Zimmer strain CB₂-KO mice, as reported previously [9]. These findings suggest that the undeleted upstream or downstream gene sequences may encode mutant or truncated CB_2R proteins or fragments in these partial CB_2 -KO mice, which may underlie the non-specific binding observed in the present study.

Few studies examined mutant CB_2R expression in either strain of CB_2 -KO mice. It is generally believed that upstream CB_2R fragments may be present in the Zimmer CB_2 -KO mice (Fig. 1), but these fragments may be unstable and degraded intracellularly. Our finding of the detection of multiple bands in brain tissues of the C-terminal-deleted Zimmer CB_2 -KO strain does not support this hypothesis and suggests the possible presence of CB_2R fragments or their coagulations. Notably, multiple antibodies that targeted the downstream CB_2R regions detected CB_2 -like signals in the N-terminal-deleted Deltagen CB_2 -KO mouse strain. However, the downstream CB_2R fragments should not be expressed because of the presence of an early stop codon in the genereplaced region (by neomycin). More studies are required to further address this issue. We recommend caution when using partial CB₂-KO mice as negative controls for WB and IHC assays. It is likely that an antibody may detect CB₂-like band(s) or immunostaining in partial CB₂-KO mice, depending on the antibody epitope and the strain of the partial CB₂-KO mice used.

A third possibility for the non-specific antibody binding may be related to the use of anti-rat CB2R polyclonal antibodies for the detection of mouse brain mCB₂R expression. Table 1 shows that CB₂Rs exhibit significant species differences in amino acid sequences. Therefore, we urge the use of species-specific CB₂ antibodies to investigate CB₂R expression in different species. For example, mouse CB₂R antibodies with epitopes at the CB₂R N-terminal should be used for investigation of CB₂R signal specificity when N-terminal-deleted Deltagen CB2-KO mice are used as controls. Unfortunately, mCB₂R-specific antibodies that targets the gene-deleted regions in both partial CB₂-KO strains are not available. Therefore, we used an rCB₂ antibody (Abcam) with epitope at the N-terminal (Fig. 1c) in the present study. This antibody has five different amino acid residues in its epitope between rCB₂R and mCB₂Rs (Table 1), and we presume that these differences may partially contribute to the relatively poor specificity observed in the present study. The use of the Abcam rCB₂ and Mackie rCB₂ antibodies in investigations of CB₂R expression in the mouse is also problematic because the epitopes are significantly different between rCB₂Rs and mCB₂Rs (Fig. 1c; Table 1). We note that the Deltagen CB2-KO strain is not a full N-terminal KO because the Nterminal 1-25 amino acid residues are likely expressed and only amino acids 26-137 are likely deleted. The presence of the N-terminal fragment (residues 1-25) in the Deltagen CB₂-KO strain may explain the "non-specific" binding observed in that strain. We note that the Alomone rCB2 and NIH5633 mCB2 antibodies should not detect CB₂R signals in the C-terminal-deleted Zimmer strain CB₂-KO mice because the epitope of the Alomone antibody is identical in rat and mouse CB₂Rs. The non-specific binding detected by both of these antibodies may be related to the use of polyclonal, rather than monoclonal, CB₂ antibodies.

In conclusion, none of the tested four antibodies were highly mCB₂R-specific. However, the presence of non-specific binding is not surprising because poor specificity is a common problem in all antibody-based assays [58-60], not only in CB₂R research. Unexpected findings (e.g., non-specific binding by polyclonal CB₂ antibodies) in WB and IHC assays should not be used to invalidate a conclusion that is otherwise well supported by many other studies. It is likely that some antibodies detect CB₂R-like signals in partial CB₂-KO mice because mutant or truncated CB₂R proteins may be expressed in these mice. Ideally, the use of anti-mouse monoclonal CB₂R antibodies in combination with full CB₂-KO mice as controls would determine CB₂R antibody signal specificity. The findings in the present study do not invalidate the expression of CB₂Rs in the brain but provide additional evidence to support our previous finding of the expression of functional CB₂Rs in multiple neuronal phenotypes. Our findings do not suggest that partial CB₂-KO mice are useless. In contrast, these mice are valid controls in receptor gene assays and various functional and behavioral assays.

ACKNOWLEDGEMENTS

This research was supported by the Intramural Research Program (IRP) of the National Institute on Drug Abuse (NIDA) (Z1A DA000389), National Institutes of Health (NIH). We thank Dr. Ken Mackie of Indiana University, Bloomington for kindly providing his rCB_2 antibody.

AUTHOR CONTRIBUTIONS

ELG, AB, and Z-xX designed the experiments. HyZ and HS performed the experiments. CJJ, HyZ, and HS analyzed the data and prepared the figures. QrL

and HyZ designed the mCB₂ antibodies (NIH5633) and gene probes (RT-PCR). HS, CJJ and ZxX wrote the manuscript with help from all co-authors.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

- 1. Howlett AC, Abood ME. CB1 and CB2 receptor pharmacology. Adv Pharmacol. 2017;80:169–206.
- Howlett AC. Pharmacology of cannabinoid receptors. Annu Rev Pharmacol Toxicol. 1995;35:607–34.
- Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–5.
- Buckley NE, et al. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur J Pharmacol. 2000;396:141–9.
- 5. Van Sickle MD, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.
- Gong JP, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071:10–23.
- 7. Xi ZX, et al. Brain cannabinoid CB2 receptors modulate cocaine's actions in mice. Nat Neurosci. 2011;14:1160–6.
- Liu QR, et al. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav. 2009;8:519–30.
- Zhang HY, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci USA. 2014;111:E5007–15.
- Ashton JC, Friberg D, Darlington CL, Smith PF. Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci Lett. 2006;396:113–6.
- Baek JH, Zheng Y, Darlington CL, Smith PF. Cannabinoid CB2 receptor expression in the rat brainstem cochlear and vestibular nuclei. Acta Otolaryngol. 2008;128:961–7.
- 12. Benito C, et al. Cannabinoid CB2 receptors in human brain inflammation. Br J Pharmacol. 2008;153:277–85.
- 13. Onaivi ES, et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann NY Acad Sci. 2006;1074:514–36.
- Rivera P, et al. Cocaine self-administration differentially modulates the expression of endogenous cannabinoid system-related proteins in the hippocampus of Lewis vs. Fischer 344 rats. Int J Neuropsychopharmacol. 2013;16:1277–93.
- Brusco A, Tagliaferro P, Saez T, Onaivi ES. Postsynaptic localization of CB2 cannabinoid receptors in the rat hippocampus. Synapse. 2008;62:944–9.
- Garcia-Cabrerizo R, Garcia-Fuster MJ. Opposite regulation of cannabinoid CB1 and CB2 receptors in the prefrontal cortex of rats treated with cocaine during adolescence. Neurosci Lett. 2016;615:60–5.
- Lu Q, Straiker A, Lu Q, Maguire G. Expression of CB2 cannabinoid receptor mRNA in adult rat retina. Vis Neurosci. 2000;17:91–5.
- Lopez EM, Tagliaferro P, Onaivi ES, Lopez-Costa JJ. Distribution of CB2 cannabinoid receptor in adult rat retina. Synapse. 2011;65:388–92.
- Garcia-Gutierrez MS, Garcia-Bueno B, Zoppi S, Leza JC, Manzanares J. Chronic blockade of cannabinoid CB(2) receptors induces anxiolytic-like actions associated to alterations in GABA(A) receptors. Br J Pharmacol. 2012;165:951–64.
- Navarrete F, Perez-Ortiz JM, Manzanares J. Cannabinoid CB(2) receptor-mediated regulation of impulsive-like behaviour in DBA/2 mice. Br J Pharmacol. 2012;165:260–73.
- Lanciego JL, et al. Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of *Macaca fascicularis*. J Psychopharmacol. 2011;25:97–104.
- Stempel AV, et al. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron. 2016;90:795–809.
- Viscomi MT, et al. Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J Neurosci. 2009;29:4564–70.
- Li Y, Kim J. Neuronal expression of CB2 cannabinoid receptor mRNAs in the mouse hippocampus. Neuroscience. 2015;311:253–67.
- Kim J, Li Y. Chronic activation of CB2 cannabinoid receptors in the hippocampus increases excitatory synaptic transmission. J Physiol. 2015;593:871–86.
- Zhang HY, et al. Expression of functional cannabinoid CB2 receptor in VTA dopamine neurons in rats. Addict Biol. 2017;22:752–65.

- Chen DJ, Gao M, Gao FF, Su QX, Wu J. Brain cannabinoid receptor 2: expression, function and modulation. Acta Pharmacol Sin. 2017;38:312–6.
- Zhang HY, et al. Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats. Neuropsychopharmacology. 2015;40:1037–51.
- Foster DJ, et al. Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release. Neuron. 2016;91:1244–52.
- Li Y, Kim J. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus. Hippocampus. 2016;26:275–81.
- den Boon FS, et al. Endocannabinoids produced upon action potential firing evoke a Cl(-) current via type-2 cannabinoid receptors in the medial prefrontal cortex. Pflug Arch. 2014;466:2257–68.
- den Boon FS, et al. Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci USA. 2012;109:3534–9.
- Morgan NH, Stanford IM, Woodhall GL. Functional CB2 type cannabinoid receptors at CNS synapses. Neuropharmacology. 2009;57:356–68.
- Atwood BK, Mackie K. CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol. 2010;160:467–79.
- Baek JH, Darlington CL, Smith PF, Ashton JC. Antibody testing for brain immunohistochemistry: brain immunolabeling for the cannabinoid CB(2) receptor. J Neurosci Methods. 2013;216:87–95.
- Marchalant Y, Brownjohn PW, Bonnet A, Kleffmann T, Ashton JC. Validating Antibodies to the cannabinoid CB2 receptor: antibody sensitivity is not evidence of antibody specificity. J Histochem Cytochem. 2014;62:395–404.
- Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA. 1999;96:5780–5.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.
- Buckley NE. The peripheral cannabinoid receptor knockout mice: an update. Br J Pharmacol. 2008;153:309–18.
- Li Y, Kim J. CB2 cannabinoid receptor knockout in mice impairs contextual longterm memory and enhances spatial working memory. Neural Plast. 2016;9817089:1–14.
- Xi ZX, et al. Brain cannabinoid CB(2) receptors modulate cocaine's actions in mice. Nat Neurosci. 2011;14:1160–6.
- 42. Liu QR, et al. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci Rep. 2017;7:17410.
- Zurolo E, et al. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies. Neuroscience. 2010;170:28–41.

- 44. Stella N. Cannabinoid signaling in glial cells. Glia. 2004;48:267-77.
- 45. Delis F, et al. Attenuation of cocaine-induced conditioned place preference and motor activity via cannabinoid CB2 receptor agonism and CB1 receptor antagonism in rats. Int J Neuropsychopharmacol. 2017;20:269–78.
- Garcia-Gutierrez MS, Perez-Ortiz JM, Gutierrez-Adan A, Manzanares J. Depressionresistant endophenotype in mice overexpressing cannabinoid CB(2) receptors. Br J Pharmacol. 2010;160:1773–84.
- Garcia-Gutierrez MS, Manzanares J. Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice. J Psychopharmacol. 2011;25:111–20.
- Agudo J, et al. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age. Diabetologia. 2010;53:2629–40.
- Flake NM, Zweifel LS. Behavioral effects of pulp exposure in mice lacking cannabinoid receptor 2. J Endod. 2012;38:86–90.
- Ortega-Alvaro A, Aracil-Fernandez A, Garcia-Gutierrez MS, Navarrete F, Manzanares J. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology. 2011;36:1489–504.
- Palazuelos J, et al. Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J. 2006;20:2405–7.
- 52. Molina-Holgado F, et al. CB2 cannabinoid receptors promote mouse neural stem cell proliferation. Eur J Neurosci. 2007;25:629–34.
- Goncalves MB, et al. A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol Cell Neurosci. 2008;38:526–36.
- 54. Elmes SJ, Jhaveri MD, Smart D, Kendall DA, Chapman V. Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naive rats and in rat models of inflammatory and neuropathic pain. Eur J Neurosci. 2004;20:2311–20.
- Jhaveri MD, et al. Evidence for a novel functional role of cannabinoid CB(2) receptors in the thalamus of neuropathic rats. Eur J Neurosci. 2008;27:1722–30.
- Nackley AG, Zvonok AM, Makriyannis A, Hohmann AG. Activation of cannabinoid CB2 receptors suppresses C-fiber responses and windup in spinal wide dynamic range neurons in the absence and presence of inflammation. J Neurophysiol. 2004;92:3562–74.
- 57. Sagar DR, et al. Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats. Eur J Neurosci. 2005;22:371–9.
- Bussolati G. Proper detection of the nuclear shape: ways and significance. Rom J Morphol Embryol. 2008;49:435–9.
- Lorincz A, Nusser Z. Specificity of immunoreactions: the importance of testing specificity in each method. J Neurosci. 2008;28:9083–6.
- 60. Rhodes KJ, Trimmer JS. Antibodies as valuable neuroscience research tools versus reagents of mass distraction. J Neurosci. 2006;26:8017–20.