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Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2’-deoxyguanosine (8-OH-
dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic
disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA
damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with
BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry
was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-
time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/
apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLβ). The levels of 8-OH-dG
were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1
expressions were downregulated, while POLβ expressions were upregulated in both the patient and sibling groups compared to
the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group
while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals
with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a
link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting
the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-
related diseases and comorbidities in individuals with a genetic predisposition to BD.
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INTRODUCTION
Bipolar disorder (BD) is a chronic mood disorder that often co-
occurs with various medical illnesses and is associated with
premature aging, resulting in a shortened life expectancy [1].
Mounting evidence suggests that individuals with BD have
elevated levels of oxidatively-induced DNA damage [2–4]. DNA
is a highly susceptible molecule to oxidative insults, and it is
estimated that every single cell of the human body is exposed to
up to a million DNA lesions [5, 6]. Nevertheless, these damages are
repaired by the cellular DNA repair machinery, which includes the
base excision repair (BER). However, an overload of oxidative
insults or insufficient repair can lead to persistent DNA damage,
genomic instability, and ultimately, premature aging and the

development of various illnesses [6]. Therefore, oxidatively-
induced DNA damage and abnormal DNA repair mechanisms
have been suggested to play a crucial role in the shared
pathophysiology among BD, increased cellular aging, and
comorbidity [7–10].
The 8-hydroxy-2’-deoxyguanosine (8-OH-dG) is formed by the

attack of the hydroxyl radical at the C8-position of guanine of dG
followed by the one-electron oxidation of the OH-adduct radical
of guanine [11, 12]. Since guanine is the most susceptible base to
oxidation due to its low reduction potential, 8-OH-dG is the most
widely used parameter to determine oxidatively-induced DNA
damage [13, 14]. Alongside 8-hydroxyguanine (8-OH-Gua), various
purine and pyrimidine base damages such as 8-hydroxyadenine
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(8-OH-Ade), 4,6-diamino-5-formamidopyrimidine (FapyAde), 2,6-
diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), cytosine
glycol (Cyt gly), thymine glycol (Thy gly), 5-hydroxymethyluracil
(5-OH-MeUra), and 5,6-dihydroxycytosine exist. In contrast to the
numerous well-established oxidatively-induced DNA base lesions,
earlier research in psychiatric disorders exclusively concentrated
on 8-OH-dG. Higher levels of 8-OH-dG were shown in individuals
with BD compared to healthy controls (HCs) [2–4]. While some
studies found higher levels during manic and depressive episodes,
but not during euthymia [15–17], others found increased levels
during all phases, including euthymia [18, 19]. A meta-analysis
suggested that the increase of the 8-OH-dG is more pronounced
in the depressive state of BD [4].
There are various DNA repair mechanisms, each designed to

address specific types of damage or lesions, including oxidatively
induced DNA lesions such as 8-OH-dG. Abnormal DNA repair
processes have been observed in various medical conditions,
including cancer and BD [20–23]. BER is recognized as the primary
mechanism for addressing oxidatively-induced DNA damage [12],
and while the number of studies on BER in BD is limited, reported
abnormalities suggest its involvement in the disorder [24].
The BER pathway initiates with the recognition and removal of

the damaged base by specific enzymes called DNA glycosylases,
forming an apurinic/apyrimidinic (abasic) site. Among these,
8-oxoguanine DNA glycosylase 1 (OGG1) is specialized for the
excision of 8-hydroxyguanine lesions. While existing research on
BER gene expression in individuals with BD has predominantly
focused on OGG1, showing decreased expression levels [25–27],
the roles of genes involved in subsequent steps after DNA
glycosylases remain less explored in BD.
In the BER pathway, endonucleases take part after DNA

glycosylases and cleave the phosphodiester bonds in this abasic
region. Apurinic/apyrimidinic endonuclease 1 (APE1) is a multi-
functional endonuclease that creates a single-strand break on
DNA, and the relationship between APE1 polymorphism and
different cancer types has been identified in previous research
[20, 28]. In addition, a study found that the polymorphism of APE1
is associated with the risk and onset of depression in patients with
recurrent depression [29]. Subsequently, Poly-ADP-ribose poly-
merase binds to the broken DNA ends, protecting them from
further degradation. Finally, the gap in the site is filled by DNA
polymerases, and a phosphodiester bond is formed by DNA
ligases [30–33]. Downregulation of DNA polymerase gamma
(POLG) gene expressions [26], and upregulation of poly ADP-
ribose polymerase 1 (PARP1) gene expression [34] have been
reported in mood disorders. DNA polymerase beta (POLβ) is the
key polymerase enzyme of the BER mechanism responsible for the
addition of nucleotides to apurinic/apyrimidinic ends. It partici-
pates in various processes such as maintaining the stability of the
genome [35] and telomeres [36] in cells, meiosis [37], and the
ligation of non-homologous ends [38, 39]. To date, there have
been no studies on the role of POLβ gene expression levels in
psychiatric disorders.
Given that BD is a highly heritable disease, studies conducted

on high-risk individuals are of great importance for the early
detection of the disease and the identification of biological risk
factors. The number of studies investigating oxidatively-induced
DNA damage in individuals at high risk for BD is limited so far.
Coello and colleagues found that the levels of 8-OH-dG were
higher in newly diagnosed BD patients and their first-degree
relatives compared to HCs [40]. On the other hand, another study
found no difference in the levels of 8-OH-dG between twins at risk
for mood disorders and HCs [41].
Currently, there is a dearth of research examining both

oxidatively-induced DNA damage and BER mechanisms in
individuals with BD, as well as in those at risk for the disorder,
such as siblings of affected individuals. Thus, this study aims to
investigate the levels of 8-OH-dG and assess the expression levels

of the BER pathway genes involved in repairing 8-OH-dG lesions in
individuals with BD, siblings of individuals with BD, and healthy
controls.

MATERIALS AND METHODS
Study design
This is an observational study with a cross-sectional design that includes
case-control groups. The study included 46 individuals with BD who were
followed up at the Maltepe University, Faculty of Medicine, Department of
Psychiatry between 2021 and 2022, 41 siblings of individuals with BD, and
51 HCs. The siblings of patients who are currently being followed at the
hospital were invited to participate in the study via phone contact. The HCs
were selected from individuals who agreed to participate in the study by
accepting the distributed leaflets around the hospital vicinity. The research
has been approved by the Maltepe University Faculty of Medicine Clinical
Research Ethics Committee. (Date: 07/24 /2019 Number: 2019/900/48).

Participants
The individuals participating in the study were between the ages of 18–50.
All participants underwent a SCID-5 interview in which the DSM-5
diagnostic criteria were examined. In addition, Health-Promoting Lifestyle
Profile-II (HPLP-II) and World Health Organization Quality of Life-BREF
(WHOQOL-Bref) were applied to the participants. While some studies
found differences between affective episodes and euthymia in oxidatively-
induced DNA damage markers [15, 17], we only included individuals with
BD or siblings who were in remission for at least 4 months. The participants
with HAMD-17 and YMRS scores below 7 were included in the study.
Individuals who had a decompensated systemic medical condition, morbid
obesity, diabetes mellitus, rheumatologic disease, active infection, or a
serious neurological disease that could affect oxidative parameters, using
antioxidant-containing treatments or supportive products that could affect
oxidative parameters, had a serious abnormality in routine laboratory
findings, had a lifelong intellectual disability or conditions affecting
cognitive function (such as delirium, dementia, epilepsy, etc.), had a
diagnosis of alcohol or substance abuse or addiction at any point of life,
were in pregnancy, lactation period or were going through menopause
were excluded from the study. Individuals who were diagnosed with
schizophrenia, schizophreniform disorder, schizoaffective disorder, brief
psychotic disorder, and psychotic disorder not otherwise specified after
the SCID-5 interview in the sibling group were excluded from the study,
because recent studies demonstrated a significant increase in oxidatively-
induced DNA damage in psychotic disorders [3]. On the other hand,
siblings who had a history of or currently have any psychiatric diagnosis
have not been excluded from the study, as they may have a higher
predisposition towards BD. In the healthy control group, individuals who
had a history of or currently had any psychiatric diagnosis were excluded
from the study. Urine and blood samples were collected from the
participants after the diagnostic interview.

Collection and storage of the samples
Participants’ first-morning urine samples and fasting blood samples (10ml)
between 08:00 and 09:00 am were collected. Daily RNA isolations were
performed on the collected whole blood samples. The RNA was extracted
from each whole blood sample using RNeasy Mini Kit (Qiagen Diagnostics
GmbH, Germany) following the manufacturer’s instructions. The amount
and purity of RNA samples were measured using a Nanodrop 2000 spectro-
photometer (Thermo Scientific). After isolation, RNA was stored at −80 °C
until it was converted to cDNA.

8-OH-dG quantification
To evaluate oxidatively-induced DNA damage, liquid chromatography-
tandem mass spectrometry (LC-MS/MS) with stable-isotope dilution using
multiple reaction monitoring (MRM) acquisition mode was performed
according to the previously published protocol [42]. 15.6 µL of 8-OH-
dG-15N5 (0.002mM) internal standard is added to 1mL of urine samples
[43], which were then centrifuged at 1000 × g for 15 min. Subsequently,
supernatants were filtered using nylon syringe filters. Filtered samples
were loaded onto extraction cartridges and then washed with 2mL of
distilled water. 1 mL of 30% methanol was used for the elution of retained
material. Eluted samples were dried in a vacuum concentrator (Thermo
Scientific SpeedVac, Marietta, Ohio, USA) and then dissolved in 100 µL
digestion buffer (1 mol/L sodium acetate, 10 mmol/L Tris-HCl, pH 7.5).
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Then, samples were hydrolyzed with alkaline phosphatase (22 units per
sample) at 37 °C for 1 h. Samples were filtered using 3 kDa tubes by
centrifugation at 5000 × g for 50min. The studies were performed by HPLC
(Shimadzu, Kyoto, Japan) coupled with a mass spectrometer equipped
with a triple quadrupole ion trap (4000 QTRAP Applied Biosystems, CA,
USA) in the positive ionization mode. Samples were separated by an LC
column with 2.1 mm× 150mm, 3.5 µm particle size (Zorbax SB-Aq column,
Agilent Technologies, California, USA) and an attached C8 guard column
(2.1 mm× 12.5 mm, 5 µm particle size). Mobile phases were water
containing 0.1% formic acid (mobile phase A) and acetonitrile containing
0.1% formic acid (mobile phase B). Analysis by LC-MS/MS with MRM was
performed using the mass/charge (m/z) transitions m/z 284 → m/z 168,
and m/z 289 → m/z 173 for 8-OH-dG and 8-OH-dG-15N5, respectively.
Urinary creatinine concentrations were used for the normalization of the
results. The results were expressed in nmol 8-OH-dG/mmol creatinine.

Base excision enzymes mRNA expression quantification using
quantitative real Time-PCR
RNA samples were converted to cDNA using the RT2 First Strand Kit
(Qiagen Diagnostics GmbH, Germany), and the quantitative Reverse
Transcription PCR amplification was performed in triplicate by The
LightCycler® 480 Instrument II (Roche) at Koc University, KUTTAM
Laboratory. OGG1, APE1, PARP1, and POLβ expressions were measured by
RT-qPCR according to the manufacturer’s protocol (LightCycler 480 SY
Green I Master Handbook Version 13, Roche Diagnostics GmbH,
Mannheim, Germany). The GAPDH and β-Actin were used as housekeeping
genes. The primers for OGG1, PARP1, APE1, POLβ, GAPDH, and β-Actin were
obtained from the manufacturer (SentebioLab, Turkey) (Table 1). The
outputs showing cycling reports and melting curves were obtained using
the LightCycler® 480 Software Version 1.5.0.39. Any Ct value of more than
35 was considered negative melting curve and was analyzed to confirm
the specificities of the amplicons for RT-qPCR amplification.
Each set of samples underwent normalization using two housekeeping

genes, GAPDH and β-Actin. The normalization was performed using the
formula ΔCt= Ct OGG1− [(Ct GAPDH+ Ct ß-Actin)/2]. To determine the relative
changes in mRNA expression levels of the base excision enzyme genes, the
term 2−ΔΔCt was employed, where ΔΔCt= ΔCt patient− ΔCt the mean value of

the healthy control group, and the fold changes were compared between
groups. The experiments adhered to the guidelines provided by Minimum
Information about Quantitative Real-Time PCR Experiments (MIQE) [44].

Statistical analyses
IBM SPSS Statistics 29.0 (Chicago IL, USA) for Windows was used for the
statistical analysis. Categorical variables were analyzed with the Chi-square
test. Continuous variables were checked for Gaussian distribution using
quantile-quantile plots, distribution of data in histograms, skewness values
(−1 to +1), kurtosis values (−2 to +2), and confirmed by the
Kolmogorov–Smirnov Test. Medians and interquartile ranges were used
in the figures. Both mean and SD and median and minimum–maximum
values were presented in the tables when normal distribution was not
achieved. The level of significance was taken as 0.05 for all tests.
Univariate Analysis of Variance (ANOVA) and Chi-square tests were

applied to compare demographical and clinical variables between study
groups. Levels of 8-OH-dG/creatinine and expression levels of OGG1, APE1,
PARP1, POLβ were compared among study groups using the Quade
Nonparametric Univariate Analyses of Covariance (ANCOVA) models which
include age, sex, body mass index (BMI), smoking status, and alcohol
consumption as covariates.
Spearman correlation analyses were applied in patient and sibling

groups separately to evaluate correlations among continuous clinical

variables (e.g., number of previous manic, hypomanic, and depressive
episodes, number of episodes with mixed features, number of psychotic
episodes, age of onset, duration of illness, duration of remission, number of
suicide attempt, number of hospitalization, scale scores [HAMD-17, YMRS,
HPLP-II total scores, WHOQOL-Bref total scores], etc.) and dependent
variables (i.e., 8-OH-dG/creatinine levels, and OGG1, APE1, PARP1, POLβ
gene expression levels). Point-biserial correlation analyses were applied to
evaluate correlations among categorical clinical variables (e.g., current/past
psychiatric history, medication type) and dependent variables (i.e., 8-OH-
dG/creatinine levels, and OGG1, APE1, PARP1, POLβ gene expression levels).
Linear regression models were applied in patient and sibling groups

separately, to identify the effect of sociodemographic variables (i.e., age,
sex, BMI, smoking status, alcohol consumption, and HPLP-II total scores),
and clinical variables that correlate with the main findings, current and
past history of psychiatric illness, and medication use (i.e., mood stabilizers,
antipsychotics, and antidepressants) on main findings.

RESULTS
Demographics
Comparison of the demographic and clinical characteristics
between study groups is presented in Table 2. While there was
no significant difference in age, sex, and years of education
between groups, a significant difference was found in terms of
employment status (p < 0.001), marital status (p= 0.035), BMI
(p= 0.007) and alcohol consumption (p= 0.033).

Urine 8-OH-dG/creatinine levels
The median urine 8-OH-dG levels were 3.20 (1.25–6.47) nmol/mmol
creatinine in individuals with BD, 3.28 (0.78–8.94) nmol/mmol
creatinine in siblings, and 2.55 (0.96–7.10) nmol/mmol creatinine in
HCs (Table 3, Fig. 1). The levels of 8-OH-dG of individuals with BD
and siblings were found to be significantly higher than the HCs
(F= 4.520, t= 2.249, p= 0.026; t= 2.803, p= 0.006). There was no
significant difference between individuals with BD and siblings
according to 8-OH-dG levels. Figure 2 illustrates representative ion-
current profiles of the m/z 284→ 168 (8-OH-dG), and m/z
289→ 173 (8-OH-dG-15N5) mass transitions, which were recorded
during the LC-MS/MS analysis of urine samples.

Base excision gene expression levels
The median OGG1 mRNA expression levels of the patient group
(0.15 [0.05–3.38]) and sibling group (0.15 [0.03–1.72]) were
significantly lower than the control group (0.19 [0.07–0.87])
(F= 3.730, t=−2.361, p= 0.020; t=−2.278, p= 0.025). There
was no significant difference between individuals with BD and
siblings according to OGG1 mRNA expression levels.
The median APE1 mRNA expression levels of the individuals with

BD (0.34 [0.11–1.55]), and siblings (0.33 [0.07–4.08]) were signifi-
cantly lower than the HCs (0.83 [0.20–10.74]) (F= 19.928, t= –5.597,
p < 0.001; t= –5.101, p < 0.001). Individuals with BD and siblings
showed no difference according to APE1 mRNA expression levels.
The median PARP1 expression levels of the individuals with BD

(0.38 [0.09–1.42]), siblings (0.40 [0.09–18.32]), and healthy controls
(0.40 [0.07–1.30]) did not show a significant difference (F= 0.301,
p= 0.741).
The median POLβ mRNA expression levels of individuals with

BD (0.19 [0.06–0.55]) and siblings (0.18 [0.06–1.03]) were
significantly higher than the HCs (0.15 [0.03–0.61]) (F= 5.642,
t= 2.490, p= 0.014; t= 3.126, p= 0.002). Individuals with BD and
siblings showed no difference according to POLβ mRNA expres-
sion levels (Table 3, Fig. 1).

Effect of clinical variables on urine 8-OH-dG/creatinine and
base excision gene expression levels
In the patient group, there was no correlation between demo-
graphic and clinical variables and 8-OH-dG/creatinine levels. There
was a negative correlation between OGG1 mRNA expression levels
and the number of suicide attempts (r=−0.341, p= 0.036),

Table 1. Gene sequences of BER enzymes.

Gene Gene sequences

F (5’-3’) R (3’-5’)

OGG1 GGCTCAACTGTATCACCACTGG GGCGATGTTGTTGTTGGAGGAAC

APE1 CTGCTCTTGGAATGTGGATGGG TCCAGGCAGCTCCTGAAGTTCA

PARP1 CCAAGCCAGTTCAGGACCTCAT GGATCTGCCTTTTGCTCAGCTTC

POLβ TGCAGAGTCCAGTGGTGACATG ATGAACCTTTTGTAACTGCTCCAC

GAPDH CCCTTCATTGACCTCAACTACA ATGACAAGCTTCCCGTTCTC

ACTB CCCAGATCATGTTTGAGACCTT CCAGAGGCGTACAGGGAT
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Table 2. Comparison of the demographic and clinical characteristics between study groups.

BD
(n= 46)
Median (min-max)
Mean ± SD

Sibling
n= 41)
Median (min-max)
Mean ± SD

HC
(n= 51)
Median (min-max)
Mean ± SD

Test
statistics
F/χ2

p

Age 35.33 ± 7.75 36.46 ± 7.86 34.25 ± 7.22 0.971 0.384

Female (n, %) 31 (67.4) 25 (61.0) 27 (52.9) 2.353 0.346

Years of education 15 (8–12)
14.54 ± 2.47

15 (8–23)
14.12 ± 4.01

15 (7–22)
14.61 ± 2.70

0.307 0.727

Employed (n, %) 31 (67.4) 35 (85.4) 50 (98) 18.385 <0.001

Married (n, %) 19 (41.3) 28 (68.3) 30 (58.8) 6.131 0.035

BMI 27.01 ± 4.61 24.79 ± 3.45 24.83 ± 3.11 6.278 0.007
BD > Sibling p= 0.007
BD > HC p= 0.005

Smoker (n, %) 27 (58.7) 17 (41.5) 28 (54.9) 3.064 0.244

Using alcohol (n, %) 19 (41.3) 25 (61.0) 34 (66.7) 7.397 0.033

HPLP-II

Health responsibility 21 (13–30)
21.25 ± 4.16

21 (11–27)
20.54 ± 4.13

21 (14–30)
21.12 ± 3.88

0.365 0.695

Physical activity 15 (8–27
15.25 ± 4.64

17 (9–30)
17.36 ± 5.04

18 (8–30)
17.76 ± 5.49

3.295 0.040
BD < HC p= 0.016

Nutrition 19 (12–29)
19.27 ± 3.83

20 (13–29
20.66 ± 3.47

20 (13–29)
19.99 ± 3.50

1.619 0.202

Spiritual growth 26 (11–34
25.20 ± 4.65

26 (18–35)
26.22 ± 4.13

28 (18–34
27.53 ± 3.68

3.857 0.023
BD < HC p= 0.007

Interpersonal relations 25.08 ± 4.29 25.89 ± 3.98 27.04 ± 3.22 3.223 0.043
BD < HC p= 0.013

Stress management 20.02 ± 3.50 10.90 ± 3.80 19.94 ± 3.31 0.013 0.987

Total score 126.06 ± 16.22 130.57 ± 16.59 133.38 ± 16.45 2.426 0.092

WHOQOL-Bref

Physical 26 (19–33
26.29 ± 3.49

29 (16–35)
27.86 ± 4.13

30 (22–35)
29.91 ± 3.21

12.361 <0.001
BD < HC p < 0.001
BD < Sibling p= 0.045
Sibling < HC p= 0.007

Psychological 22 (13–28)
21.24 ± 3.35

22 (14–28
21.90 ± 3.02

23 (15–30)
23.61 ± 2.85

7.702 <0.001
BD < HC p < 0.001
Sibling < HC p= 0.009

Social 10 (5–14)
10.37 ± 2.10

12 (8–14)
11.40 ± 1.80

12 (8–15)
11.82 ± 1.73

7.467 < 0.001
BD < HC p < 0.001
BD < Sibling p= 0.012

Environment 30 (22–40)
29.83 ± 4.08

31 (23–37)
30.72 ± 3.81

31 (23–39)
31.00 ± 3.33

1.261 0.287

Total score 94.77 ± 11.65 99.01 ± 11.63 103.91 ± 10.25 8.154 <0.001
BD < HC p < 0.001
Sibling < HC p
=
0.038

Additional current psychiatric
conditiona (n, %)

7 (15.2) 5 (12.2) - - -

Past psychiatric conditionb (n, %) 1 (2.2) 13 (31.7) - - -

Number of suicide attempts 0 (0–3)
0.28 ± 0.66

0 (0–1)
0.07 ± 0.26

- - -

Number of manic episodes 2 (1–10)
2.74 ± 1.96

- - - -

Number of hypomanic episodes 0 (0–9)
0.80 ± 1.72

- - - -

Number of depressive episodes 1 (0–10)
1.96 ± 1.91

- - - -

Number of episodes with mixed
features

0 (0–5)
0.43 ± 0.93

- - - -

Number of psychotic episodes 2 (0–10)
2.13 ± 2.20

- - - -
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HAMD-17 scores (r=−0.410, p= 0.013), and WHOQOL-Bref total
scores (r=−0.376, p= 0.020). APE1 mRNA expression levels
showed positive correlations with the number of depressive
episodes (r= 0.420, p= 0.009), and negative correlations with the
number of hospitalizations (r=−0.330, p= 0.043) and WHOQOL-
Bref total scores (r=−0.377, p= 0.020). PARP1 mRNA expression
levels showed a positive correlation with the use of antidepres-
sants (ρ= 0.419, p= 0.010), and POLβ mRNA expression levels

showed no correlation with the demographic and clinical
variables. In the patient group, linear regression models, which
included sociodemographic variables, and clinical variables that
correlated with the main findings (i.e., number of depressive
episodes, number of suicide attempts, number of hospitalizations,
HAMD-17 scores, antidepressant use), revealed that those para-
meters did not have a significant impact on 8-OH-dG levels
(R2= 0.091, F= 0.635, p= 0.702). Age, smoking status, and the

Table 2. continued

BD
(n= 46)
Median (min-max)
Mean ± SD

Sibling
n= 41)
Median (min-max)
Mean ± SD

HC
(n= 51)
Median (min-max)
Mean ± SD

Test
statistics
F/χ2

p

Total number of episodes 5 (2–20)
5.91 ± 3.60

- - - -

Age of onset 22 (13–40)
22.72 ± 5.92

- - - -

Duration of illness (months) 120 (24–396)
149.48 ± 94.82

- - - -

Duration of remission (months) 12 (4–96)
22.22 ± 23.08

- - - -

Number of hospitalizations 1 (0–8)
1.71 ± 1.73

- - - -

HAMD-17 0 (0–6)
0.98 ± 1.61

0 (0–0)
0.51 ± 1.07

- - -

YMRS 0 (0–4)
0.59 ± 1.13

0 (0–2)
0.05 ± 0.32

- - -

BD bipolar disorder, HC Healthy control, BMI Body mass index, HPLP II Health-Promoting Lifestyle Profile-II, WHOQOL-Bref World Health Organization Quality of
Life-BREF, HAMD-17 Hamilton Depression Rating Scale-17, YMRS Young Mania Rating Scale.
aAdditional current psychiatric conditions for BD patients: anxiety disorders (n= 3), obsessive-compulsive disorder (OCD, n= 1), attention-deficiency/
hyperactivity disorder (ADHD, n= 2), eating disorder (n= 1); for siblings: anxiety disorders (n= 3), comorbid anxiety and ADHD (n= 2).
bPast psychiatric condition for BD patients: ADHD (n= 1), for siblings: major depressive disorder (MDD, n= 10), anxiety disorders (n= 2), comorbid anxiety and
ADHD (n= 1).
All significant results have been highlighted in bold.

Table 3. Comparison of 8-OH-dG/creatinine levels and BER pathway enzymes gene expression levels among study groups.

BD Median (min-max)
Mean ± SD

Sibling Median (min-max)
Mean ± SD

HC Median (min-max)
Mean ± SD

F p

8-OH-dG/creatinine (nmol/
mmol)

3.20
(1.25–6.47)
3.25 ± 1.22

3.28
(0.78–8.94)
3.51 ± 1.64

2.55
(0.96–7.10)
2.78 ± 1.19

4.520 0.013
BD >HC
p= 0.026
Sibling >HC
p= 0.006

Fold change in OGG1
mRNA expression
(2-ΔΔCt)

0.15
(0.05–3.38)
0.30 ± 0.59

0.15
(0.03–1.72)
0.22 ± 0.29

0.19
(0.07–0.87)
0.25 ± 0.17

3.730 0.027
BD <HC
p= 0.020
Sibling <HC
p= 0.025

Fold change in APE1 mRNA
expression
(2-ΔΔCt)

0.34
(0.11–1.55)
0.45 ± 0.36

0.33
(0.07–4.08)
0.60 ± 0.75

0.83
(0.20–10.74)
1.60 ± 2.11

19.928 <0.001
BD <HC
p < 0.001
Sibling <HC
p < 0.001

Fold change in PARP1
mRNA expression
(2-ΔΔCt)

0.38
(0.09–1.42)
0.49 ± 0.31

0.40
(0.09–18.32)
0.96 ± 3.08

0.40
(0.07–1.30)
0.50 ± 0.30

0.301 0.741

Fold change in POLβ
mRNA expression
(2-ΔΔCt)

0.19
(0.06–0.55)
0.21 ± 0.12

0.18
(0.06–1.03)
0.24 ± 0.17

0.15
(0.03–0.61)
0.16 ± 0.11

5.642 0.005
BD >HC
p= 0.014
Sibling >HC
p= 0.002

All significant results have been highlighted in bold.
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number of depressive episodes had an impact on APE1 mRNA
expression levels (R2= 0.610, F= 5.659, p < 0.001; B=−0.016,
t=−2.815, p= 0.009; B= 0.238, t= 2.653, p= 0.013; B= 0.124,
t= 5.122, p < 0.001). Clinical parameters did not have an impact
on OGG1, PARP1 or POLβ mRNA expression levels (R2= 0.314,
F= 1.548, p= 0.187; R2= 0.256, F= 1.422, p= 0.235; R2= 0.258,
F= 1.795, p= 0.133).
In siblings, there was a positive correlation between 8-OH-dG

levels and past psychiatric history (ρ= 0.315, p= 0.045), and there
was no relationship between OGG1, APE1, POLβ, PARP1 expression
levels, and clinical variables. In sibling group, linear regression
models, which included sociodemographic variables, and clinical
variables that correlated with the main findings (i.e., past
psychiatric history), revealed that BMI, smoking status, and past

psychiatric history had an impact on 8-OH-dG levels (R2= 0.395,
F= 3.073, p= 0.013; B=−0.174, t=−2.343, p= 0.025; B= 1.015,
t= 2.129, p= 0.041; B= 1.338, t= 2.666, p= 0.012). None of the
clinical variables had an impact on OGG1, APE1, PARP1, POLβ
mRNA expression levels (R2= 0.176, F= 1.065, p= 0.405;
R2= 0.180, F= 1.100, p= 0.385; R2= 0.091, F= 0.453, p= 0.836;
R2= 0.213, F= 1.357, p= 0.264).

DISCUSSION
This study is the first to compare both oxidatively-induced DNA
damage and BER expression levels among individuals with BD,
siblings of individuals with BD, and HCs. Our findings indicate
higher levels of 8-OH-dG, downregulated OGG1, and APE1

Fig. 1 Comparison of 8-OH-dG/creatinine levels and BER pathway enzymes gene expression levels among study groups. Levels of
8-OHdG were significantly higher in individuals with bipolar disorder and siblings of individuals with bipolar disorder compared to healthy
controls. Expression levels of OGG1 and APE1 genes were significantly lower, and expression levels of POLβ gene were significantly higher in
individuals with bipolar disorder and siblings of individuals with bipolar disorder compared to healthy controls.

Fig. 2 Ion–current profiles of the m/z 284→168 (8-OH-dG), m/z 289→173 (8-OH-dG-15N5) mass transitions. Ion–current profiles for 8-OH-
dG at m/z 284→168 (m/z precursor ion → product ion) and for 8-OH-dG-15N5 at m/z 289→173 (m/z precursor ion → product ion) were
recorded during the LC-MS/MS analysis of a urine sample. The peak corresponding to 8-OH-dG in the figure originates from the analyte in the
sample, and the peak for 8-OH-dG-15N5 comes from the stable isotope-labeled internal standard added to the sample. Quantification was
performed using the ratio of the integrated peak areas of these two peaks.
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expressions, and upregulated POLβ expressions in both the
patient and sibling groups compared to HCs, with no significant
differences observed between individuals with BD and their
siblings.
Our findings present increased levels of 8-OH-dG in euthymic

individuals with BD compared to HCs, which is supported by
various studies in the literature [18, 19, 40]. Additionally, our
results are consistent with a large-scale study that reported higher
levels of 8-OH-dG in at-risk relatives of individuals with BD
compared to HCs [40]. The elevated levels of 8-OH-dG in at-risk
individuals support the role of oxidatively-induced DNA damage
in BD pathogenesis. Additionally, our findings suggest that past
psychiatric history has an impact on 8-OH-dG levels in siblings,
most of whom had previous depressions. Increasing data suggest
that there is a significant elevation in 8-OH-dG levels in depression
[4, 45]. However, follow-up studies suggest that the increase in
acute depression is reversible and returns to normal values after
the resolution of depressive symptoms [27, 34, 46]. It should be
noted that the siblings with previous episodes were euthymic at
the time of inclusion in our study. Siblings with previous episodes
may be more likely to share a genetic predisposition with
individuals with BD, who present high levels of 8-OH-dG despite
being euthymic. In addition, despite the widespread recognition
of high DNA damage in obesity [47], we found that BMI has a
negative impact on 8-OH-dG levels in siblings of individuals with
BD. However, it is important to note that our study sample only
included a small subset of siblings with obesity, and none of them
had morbid obesity, which limits the generalizability of this
finding.
Our finding showing a down-regulation in OGG1 gene

expression in BD is in concordance with two studies presenting
consistent findings of decreased OGG1 gene expression levels
during euthymia in BD [25, 26]. In contrast, a study reported
decreased OGG1 gene expression in acute unipolar or bipolar
depression compared to HCs, with a significant increase after
remission [27]. However, the authors speculated that the increase
in OGG1 gene expression after remission might be temporary and
may return to decreased levels over time. Our findings also
present, a down-regulation of APE1 gene expression and
upregulation of POLβ gene expression in BD and sibling groups,
while PARP1 gene expression was comparable among study
groups. As far as we know, APE1 and POLβ gene expressions have
not been investigated in peripheral samples of individuals
with BD.
Our data revealed a significant association between APE1 levels

and the number of previous depressive episodes. Our findings
also showed that APE1 gene expression levels in patients with BD
may be influenced by age, as oxidative stress has been shown to
be closely related to aging and deficiencies in repair enzymes.
Additionally, smoking had a positive effect on APE1 gene
expression levels in the patient group and 8-OH-dG levels in the
sibling group, as smoking is associated with higher levels of 8-OH-
dG. It is possible that increased expression of APE1 levels occurs in
response to increased levels of 8-OH-dG, serving as an adaptive
mechanism for repair in individuals with BD. In our study, the
finding of elevated POLβ gene expression levels in patient and
sibling groups compared to HCs may indicate the significant
involvement of this enzyme in the physiopathology of BD.
On the other hand, our study found comparable levels of PARP1

gene expression in individuals with BD and their siblings to those
in HCs. While previous research has not investigated PARP1 levels
in BD specifically, our negative result may be due to studying a
group of individuals who were euthymic at the time of inclusion.
PARP1 gene polymorphism has been found to be associated with
depression [29], and increased PARP1 gene expression levels have
been observed in individuals with depression [34]. Inhibition of
PARP1 has shown antidepressant effects in both human and
animal studies [48–50], suggesting that it could be a potential

target for future antidepressant treatments. Further studies
investigating these genes in acute phases would extend our
understanding.
Lower levels of OGG1 and APE1 gene expression and higher

levels of POLβ gene expression in siblings compared to HCs,
indicate reduced DNA repair capacity in both patients with BD and
their siblings. Many clinical, molecular, and neuroimaging studies
have shown differences in first-degree relatives of individuals with
BD compared to HCs [51]. Individuals who have a genetic
predisposition to BD may display impairments in visual memory,
verbal memory, processing speed, attention, and social cognition
compared to HCs [52]. Structural and functional alterations in the
prefrontal cortex [53–55] and white matter abnormalities in the
body and splenium of the corpus callosum [56] have been
observed in individuals with genetic predisposition to BD, as well
as alterations in markers of neuroimmune dysregulation [57, 58].
Our results suggest that the BER pathway genes may serve as
candidate endophenotypes for BD. In addition, dysregulated BER
gene expressions may underlie the increased 8-OH-dG load in
euthymic individuals with BD and their full siblings, potentially
contributing to disease vulnerability and premature aging.
However, further studies investigating BER genes and aging
markers together are needed to confirm these associations.
The current study has several strengths. First, to the best of our

knowledge, this is the first study to investigate the BER genes in
the unaffected siblings of individuals with BD. Since full siblings of
individuals with BD have the highest risk of developing the
disorder after identical twins [59], the inclusion of full siblings of
individuals with BD can provide valuable insights to demonstrate
the DNA damage/repair abnormalities in individuals with a
genetic predisposition of BD and can help identify potential
targets for early intervention and prevention of BD. Additionally,
mood-stabilizing medication is a major challenge in most studies
on BD. The inclusion of full siblings who are genetically similar to
individuals with BD but are not taking any medication helps to
distinguish the potential impacts of medications. Second, using
urine samples for 8-OH-dG measurement is another strength of
the study, because it allows for the assessment of systemic
oxidatively-induced DNA load in the body. Measurements of DNA
damage markers in tissues can be affected by repair processes and
may not fully reflect the oxidative load in the whole body.
However, the products of oxidatively-induced DNA lesions, after
repair, are excreted into urine without being further metabolized,
making urinary 8-OH-dG levels a reliable indicator of systemic
oxidatively-induced DNA damage [60, 61]. Additionally, the use of
a gold standard technique for urine DNA damage measurements,
liquid chromatography-tandem mass spectroscopy, for 8-OH-dG
quantification is a strength due to its sensitivity and specificity
compared to other techniques such as immunosorbent methods.
To address a potential limitation resulting from the impact of
glomerular filtration rate in measuring 8-OH-dG levels in urine
samples [60], we used a normalization method by adjusting the 8-
OH-dG levels to the levels of creatinine, as recommended by
previous research [17]. Third, we have limited our cohort to
individuals under the age of 50, as current literature defines old
age as 50 in the BD population [62], in order to exclude the impact
of senescence on our findings. Numerous studies have shown that
age is a major confounding factor in research on oxidatively-
induced DNA damage [63, 64]. Fourth, we controlled our findings
for various types of confounders, including lifestyle factors, in
addition to common confounders such as age, sex, BMI, smoking,
and alcohol consumption. More importantly, investigating DNA
damage and repair processes in combination allows us to gain a
more comprehensive understanding of this dynamic process.

Limitations
The five main limitations of this study must be considered and
discussed. First, the cross-sectional nature of the study and the
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lack of longitudinal follow-up of patients and siblings limit the
ability to draw causal conclusions and understand the direction of
causality. Therefore, future follow-up of these siblings would be
helpful in differentiating the roles of possible factors, such as
resilience to BD, on these parameters. Second, some of the
individuals recruited in the sibling group had a history of or
currently presented psychiatric disorders. Although psychotic
spectrum disorders and current depressive episodes were
exclusion criteria due to their potential to cause a significant
increase in 8-OH-dG levels, other psychiatric disorders such as past
major depression, anxiety disorders, and attention deficit hyper-
activity disorder were not considered as exclusion criteria in the
sibling group. Although there are findings in the literature
indicating increased DNA damage in these disorders [2, 46, 65],
there is currently no available data on the extent to which this
damage changes during the remission period. Additionally, our
results showed that the current comorbid psychiatric illness in the
sibling group did not affect DNA damage and BER mechanisms in
the regression analysis. However, the potential influence of past or
present psychiatric disorders on DNA damage and repair
mechanisms should be considered in future studies with larger
sample sizes. Third, another limitation of our study is that we did
not exclude smokers, despite the well-established influence of
smoking on these markers. However, due to the high prevalence
of smoking in patients with BD and individuals with a genetic
predisposition to BD, excluding smokers would introduce
potential sampling bias. On the other hand, to address this
limitation, we controlled for the effect of smoking in all statistical
analyses. Fourth, our study focused only on the levels of 8-OH-dG
lesion and four key BER genes involved in the repair of 8-OH-dG
damage. Further studies investigating other types of DNA lesions,
as well as RNA lesions, and the full pathway of BER genes will
provide more comprehensive knowledge. Additionally, only
focusing on mRNA expressions of genes is a limitation because
protein levels and enzymatic activity may also affect the BER.
Future studies using more comprehensive methods to investigate
the BER enzymes may provide a more comprehensive under-
standing of the entire process. Finally, it is important to note that
our study investigated DNA damage/repair status in peripheral
blood cells, while brain cells have a high metabolic rate with high
oxygen turnover, they may have a greater reliance on efficient and
active BER than peripheral blood cells. On the other hand, studies
suggest that there are consistent results among peripheral and
central levels of DNA damage markers [66, 67]. Nevertheless,
future studies investigating the DNA damage/repair status in brain
tissue may provide a more accurate reflection of the mechanisms
involved in BD.

CONCLUSION
Our findings suggest that abnormalities in DNA damage and
repair mechanisms are linked to familial susceptibility to BD. Given
that increased levels of 8-OH-dG have also been observed in other
psychiatric and somatic diseases, elevated levels of 8-OH-dG may
indicate a shared mechanism of increased oxidatively-induced
DNA damage and cellular aging, which may contribute to the
comorbidity risk in individuals with a genetic predisposition to BD.
On the other hand, the BER pathway abnormalities might be a
potential underlying accumulation of DNA damage, leading to
premature aging and an increased risk of comorbidities such as
metabolic disorders, cardiovascular diseases, and neurodegenera-
tive diseases in individuals with a genetic predisposition to BD.
Hence, targeting the BER pathway might offer promising
therapeutic strategies for reducing the risk of age-related diseases
and comorbidities in individuals with mood disorders. Further,
large-scale longitudinal studies investigating both oxidatively-
induced DNA damage and BER pathways in BD are required to
obtain more accurate and precise results.
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